Code for classifying international patents based on the text of their titles/abstracts

Overview

Patent Classification

Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO website into one of eight categories based on the textual content of their titles/abstracts.

  • The patent data is available as raw XML from this URL: https://bulkdata.uspto.gov/
  • Each large zipped file contains a single file, with multiple XML blocks
  • This repo contains preprocessing code (preproc.py) to organize these XML blocks into a form that can be parsed, and the relevant information extracted for classification purposes.

The patent top-level section labels that are of interest are as follows:

A, B, C, D, E, F, G, H

A: Human necessities
B: Performing operations; transporting
C: Chemistry; metallurgy
D: Textiles; paper
E: Fixed constructions
F: Mechanical engineering; lighting; heating; weapons; blasting
G: Physics
H: Electricity

A detailed guide to the WIPO classification taxonomy is available on the WIPO website. In addition, more information on the content taxonomy is available in the following document:

Guide to the International Patent Classification, 2020 Edition, part II, p5.

Installation

This step assumes that Python 3.9+ is installed. Set up a virtual environment and install from requirements.txt:

$ python3 -m venv .venv
$ source .venv/bin/activate
$ pip3 install -r requirements.txt

For further development, simply activate the existing virtual environment.

$ source .venv/bin/activate

Download and install spaCy language model

Within the activated virtual environment, once the dependencies are installed from requirements.txt, run the following command:

$ python3 -m spacy download en_core_web_sm

This provides the standard (small) spaCy's English language model for downstream lemmatization, explained below.

Preprocessing

The preprocessing script requires that an unzipped raw XML file (with information on hundreds of patents) exists in the raw_data/ directory. As an example, the following file is downloaded from the source, uncompressed, and stored in the below path in XML format:

  • raw_data/ipgb20200107_wk01/ipgb20200107.xml

Because the large XML file is not directly parsable, it needs to be broken down into individual blocks, each of which constitute a valid XML tree. This can then be parsed, and the relevant information extracted. Using this approach, we can organize the information into a form that can be used to train an ML classifier.

Run the preprocessing script (after editing the path to the raw data appropriately) as follows:

$ python3 preproc.py

This produces a new directory with clean, parsable XML files, and writes out the data to a JSON file (data.json). The JSON data consists of the following key-value pairs:

data = {
    "doc_id": doc_id,
    "title": title,
    "abstract": abstract,
    "label": section_label,
}

Note that the section_label field here refers to the top-level of the classification hierarchy (8 categories, from A-H).


Baseline model: Linear Support Vector Machine (SVM)

The baseline model trained is a linear SVM, via the sklearn library's SGDClassifier). This model implements an L2-regularized linear model with stochastic gradient descent and mini-batching, making it a good choice for quickly training a reasonable model for benchmarking purposes.

Additional data processing steps

To reduce the number of redundant features the model has to learn, it makes sense to clean up the text data in a way that words are collapsed to their root form. Lemmatization is a good option, as it reduces inflectional forms of a word ("condenses" becomes "condense"). spaCy is an NLP library that allows us to efficiently process and lemmatize text through a lookup process that can be made concurrent to deal with large amounts of data in batches.

The following data processing steps are performed on the data.json file generated in the previous step:

  • Lowercasing: Further reduces the number of features to be learned ("Condense" and "condense" mean one and the same thing)
  • Stopword removal: Allows us to ignore useless tokens that don't add discriminatory potential ("a", "an", "the")
  • Lemmatization: Reduces inflectional forms of words to their root form (lemmas)
  • Combine title and abstract: The title of a patent contains useful tokens that are commonly repeated in the abstract -- this could help strengthen the training signal by allowing the model to learn the importance of repeated tokens across classes

Cost-sensitive weighting

In a classification task, it is possible to consider misclassification cost into account during training. This is done by changing the penalty imposed on the learner for misclassifying classes, based on the proportion of training samples per class. In sklearn, this can be done by applying a balanced weighting function. The “balanced” term implies that the values of the true class labels are adjusted using weights that are inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)). The following results are obtained.

{
    'A': 0.9547325102880658,
    'B': 1.0943396226415094,
    'C': 2.005763688760807,
    'D': 24.857142857142858,
    'E': 6.444444444444445,
    'F': 2.005763688760807,
    'G': 0.3945578231292517,
    'H': 0.43256681168427596
}

The weighting factors above make sense: Class 'D' has the highest weight because it has by far the fewest training samples. Class 'G' has the lowest weight because it has the most number of training samples.

Number of training samples:
G    2177
H    2019
A     919
B     810
F     432
C     421
E     145
D      37

Experiments and SVM results

The SVM trainer and evaluator is run as follows: sh

$ python3 classifier_svm.py

1. Hinge loss, no class weighting, l2-reg alpha=0.0005

The default loss function, which is hinge loss, gives a linear SVM. The initial training run is made without handling class imbalance, i.e., with equal cost weighting applied to all classes, to see the effect of later experiments. The following results are obtained.

Macro F1: 53.349 %
Micro F1: 66.595 %
Weighted F1: 65.570 %
Accuracy: 66.595 %

This initial classifier is a rather poor one, because, as the confusion matrix shows, it has poor discrimatory power toward the minority classes ('D' and 'E').

2. Hinge loss, with balanced class weighting, l2-reg alpha=0.0005

To address class imbalance, the next attempt is to apply a cost-sensitive weighting function to the classes during training, as shown above. The following results are obtained. The overall accuracy and weighted F1-scores are slightly lower than before, but, there is a slight increase in Macro F1-score, indicating that the cost-sensitive weighting improves the classifier's sensitivity to the minority classes.

Macro F1: 56.192 %
Micro F1: 63.721 %
Weighted F1: 64.544 %
Accuracy: 63.721 %

From the confusion matrix, it is clear that the minority classes 'D' and 'E' are much better predicted in this model. However, the overall accuracy and F1 scores dropped because of a loss of performance across the other classes, likely due to underfitting and an insufficient degree of convergence.

3. Modified Huber loss, with balanced class weighting, l2-reg alpha=0.0005

Modified Huber is another smooth loss function that is more tolerant to outliers in the feature space as compared to mean-squared loss (typically used in regression problems). As mentioned in the sklearn documentation, this loss function can prove useful in classification problems as well, as it brings more tolerance to the probability estimates as well. This results in improved performance as shown below.

Macro F1: 59.116 %
Micro F1: 66.739 %
Weighted F1: 67.220 %
Accuracy: 66.739 %

In this case, the macro F1-score is the highest among all the cases, because of uniformly better performance across all classes. The weighted F1-score and accuracy are also significantly higher than the cases which used hinge loss, indicating that this choice of loss function is more suited to the feature space of our problem.

Best SGDClassifier model parameters for the baseline

Without running any further hyperparameter tuning or grid search experiments, the best baseline model results were obtained using the below parameters.

(
    "clf",
    SGDClassifier(
        loss="modified_huber",
        penalty="l2",
        alpha=5e-4,
        random_state=42,
        max_iter=100,
        learning_rate="optimal",
        tol=None,
    ),
)

The following normalized confusion matrix was obtained with the best model that uses the modified Huber loss function.

Each value in a cell represents the fraction of samples in each class that were correctly classified. As can be seen, applying class weighting based on the imbalance in the training data results in model with a moderately decent predictive power for the majority and minority classes in this dataset.


Can we do better with transformers?

🤗 DistilBERT

The DistilBERT model was first proposed in the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. It has 40% less parameters than bert-base-uncased, runs 60% faster while preserving over 95% of BERT’s performance as measured on the GLUE language understanding benchmark.

Data preprocessing and tokenization

We use the distilbert-base-uncased tokenizer. Case-sensitivity is not a concern in this dataset because typical patents we encounter consist of well-formatted text with almost no typos/misspellings, and we would expect words in the data to retain context regardless of capitalization.

The data is loaded and transformed (i.e., encoded into input IDs with attention masks) through a combination of the Hugging Face Datasets library, as well as their Tokenizers library. The Datasets pipeline allows us to easily generate train/validation/test splits from a range of raw data sources, and the Tokenizers pipeline efficiently encodes the vocabulary of the dataset into a form that the DistilBERT trainer instance can make use of.

Model training

The model is trained using the classifier_distilbert_train.py script provided in this repo as follows.

$ python3 classifier_distilbert_train.py

Verify that the training loss goes down in each epoch, and that the validation F1 increases accordingly. This outputs the model weights to the pytorch_model/ directory

Model optimization and compression

A big concern with deep learning models is the computational cost associated with making inferences on real world data in production. One approach to make the inference process more efficient is to optimize and quantize the PyTorch model via ONNX, an open source framework that provides a standard interface for optimizing deep learning models and their computational graphs.

On average, a 30x speedup in CPU-based inference, along with a 4x reduction in model size is observed for an optimized, quantized DistilBERT-ONNX model (compared to the base DistilBERT-PyTorch model that we trained on GPU).

Use 🤗 Hugging Face command line module to convert to ONNX

See the PyTorch documentation for a more detailed description of quantization, as well as the difference between static and dynamic quantization.

The following command is used to convert the PyTorch model to an ONNX model. First, cd to an empty directory in which we want the ONNX model file to be saved, and then specify the source PyTorch model path (that contains a valid config.json) in relation to the current path. An example is shown below.

# Assume that the PyTorch model weights (.bin file) are in the pytorch_model/ directory
$ cd onnx_model
$ python3 -m transformers.convert_graph_to_onnx \
  --framework pt \
  --model pytorch_model \
  --tokenizer distilbert-base-uncased \
  --quantize onnx_model \
  --pipeline sentiment-analysis

Note that we need to specify the --pipeline sentiment-analysis argument to avoid input array broadcasting issues as per the Hugging Face API. Specifying the sentiment-analysis argument forces it to use sequence classification tensor shapes during export, so the correct outputs are sent to the ONNX compute layers.

The quantized ONNX model file is then generated with in the current directory, which can then be used to make much more rapid inferences on CPU.

DistilBERT results

The evaluation script classifier_distilbert_evaluate.py is run to produce the following results.

$ python3 classifier_distilbert_evaluate.py
Macro F1: 64.050 %
Micro F1: 80.603 %
Weighted F1: 80.041 %
Accuracy: 80.603 %

Although the transformer-based classifier is performing much, much better on the majority classes ("G", "H"), the confusion matrix shows that it has almost no predictive power toward the minority classes (especially "D", which had far too few training samples -- just 37 overall in the original data).

Remedy

The best way to improve the DistilBERT classifier's predictive power toward the minority class would be to obtain more training samples and to reduce overall class imbalance. This can be done by scraping and obtaining more patent data over multiple months for the minority classes ("D" and "E"). In general, a few hundred training samples per class should suffice during fine-tuning transformer models (a couple thousand would be ideal).

In addition, just like in the case with the SVM, it is possible to perform cost-sensitive weighting for the transformer model by subclassing the Trainer instance and passing the class weights to the CrossEntropy loss as follows:

class CostSensitiveTrainer(Trainer):
    def compute_loss(self, model, inputs, return_outputs=False):
        labels = inputs.get("labels")
        outputs = model(**inputs)
        logits = outputs.get("logits")
        loss_fct = torch.nn.CrossEntropyLoss(weight=weights)
        loss = loss_fct(
            logits.view(-1, self.model.config.num_labels),
            labels.float().view(-1, self.model.config.num_labels),
        )
        return (loss, outputs) if return_outputs else loss

See this GitHub issue on the 🤗 Hugging Face transformers repo for more details.

Happy training!

Owner
Prashanth Rao
Data Scientist and Software Developer. My primary interests are in building end-to-end, automated intelligent systems using machine learning and NLP.
Prashanth Rao
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022