Revisiting Weakly Supervised Pre-Training of Visual Perception Models

Related tags

Deep LearningSWAG
Overview

SWAG: Supervised Weakly from hashtAGs

This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Perception Models.

PWC
PWC
PWC
PWC
PWC

Requirements

This code has been tested to work with Python 3.8, PyTorch 1.10.1 and torchvision 0.11.2.

Note that CUDA support is not required for the tutorials.

To setup PyTorch and torchvision, please follow PyTorch's getting started instructions. If you are using conda on a linux machine, you can follow the following setup instructions -

conda create --name swag python=3.8
conda activate swag
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

Model Zoo

We share checkpoints for all the pretrained models in the paper, and their ImageNet-1k finetuned counterparts. The models are available via torch.hub, and we also share URLs to all the checkpoints.

The details of the models, their torch.hub names / checkpoint links, and their performance on Imagenet-1k (IN-1K) are listed below.

Model Pretrain Resolution Pretrained Model Finetune Resolution IN-1K Finetuned Model IN-1K Top-1 IN-1K Top-5
RegNetY 16GF 224 x 224 regnety_16gf 384 x 384 regnety_16gf_in1k 86.02% 98.05%
RegNetY 32GF 224 x 224 regnety_32gf 384 x 384 regnety_32gf_in1k 86.83% 98.36%
RegNetY 128GF 224 x 224 regnety_128gf 384 x 384 regnety_128gf_in1k 88.23% 98.69%
ViT B/16 224 x 224 vit_b16 384 x 384 vit_b16_in1k 85.29% 97.65%
ViT L/16 224 x 224 vit_l16 512 x 512 vit_l16_in1k 88.07% 98.51%
ViT H/14 224 x 224 vit_h14 518 x 518 vit_h14_in1k 88.55% 98.69%

The models can be loaded via torch hub using the following command -

model = torch.hub.load("facebookresearch/swag", model="vit_b16_in1k")

Inference Tutorial

For a tutorial with step-by-step instructions to perform inference, follow our inference tutorial and run it locally, or Google Colab.

Live Demo

SWAG has been integrated into Huggingface Spaces 🤗 using Gradio. Try out the web demo on Hugging Face Spaces.

Credits: AK391

ImageNet 1K Evaluation

We also provide a script to evaluate the accuracy of our models on ImageNet 1K, imagenet_1k_eval.py. This script is a slightly modified version of the PyTorch ImageNet example which supports our models.

To evaluate the RegNetY 16GF IN1K model on a single node (one or more GPUs), one can simply run the following command -

python imagenet_1k_eval.py -m regnety_16gf_in1k -r 384 -b 400 /path/to/imagenet_1k/root/

Note that we specify a 384 x 384 resolution since that was the model's training resolution, and also specify a mini-batch size of 400, which is distributed over all the GPUs in the node. For larger models or with fewer GPUs, the batch size will need to be reduced. See the PyTorch ImageNet example README for more details.

Citation

If you use the SWAG models or if the work is useful in your research, please give us a star and cite:

@misc{singh2022revisiting,
      title={Revisiting Weakly Supervised Pre-Training of Visual Perception Models}, 
      author={Singh, Mannat and Gustafson, Laura and Adcock, Aaron and Reis, Vinicius de Freitas and Gedik, Bugra and Kosaraju, Raj Prateek and Mahajan, Dhruv and Girshick, Ross and Doll{\'a}r, Piotr and van der Maaten, Laurens},
      journal={arXiv preprint arXiv:2201.08371},
      year={2022}
}

License

SWAG models are released under the CC-BY-NC 4.0 license. See LICENSE for additional details.

Owner
Meta Research
Meta Research
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022