Revisiting Weakly Supervised Pre-Training of Visual Perception Models

Related tags

Deep LearningSWAG
Overview

SWAG: Supervised Weakly from hashtAGs

This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Perception Models.

PWC
PWC
PWC
PWC
PWC

Requirements

This code has been tested to work with Python 3.8, PyTorch 1.10.1 and torchvision 0.11.2.

Note that CUDA support is not required for the tutorials.

To setup PyTorch and torchvision, please follow PyTorch's getting started instructions. If you are using conda on a linux machine, you can follow the following setup instructions -

conda create --name swag python=3.8
conda activate swag
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

Model Zoo

We share checkpoints for all the pretrained models in the paper, and their ImageNet-1k finetuned counterparts. The models are available via torch.hub, and we also share URLs to all the checkpoints.

The details of the models, their torch.hub names / checkpoint links, and their performance on Imagenet-1k (IN-1K) are listed below.

Model Pretrain Resolution Pretrained Model Finetune Resolution IN-1K Finetuned Model IN-1K Top-1 IN-1K Top-5
RegNetY 16GF 224 x 224 regnety_16gf 384 x 384 regnety_16gf_in1k 86.02% 98.05%
RegNetY 32GF 224 x 224 regnety_32gf 384 x 384 regnety_32gf_in1k 86.83% 98.36%
RegNetY 128GF 224 x 224 regnety_128gf 384 x 384 regnety_128gf_in1k 88.23% 98.69%
ViT B/16 224 x 224 vit_b16 384 x 384 vit_b16_in1k 85.29% 97.65%
ViT L/16 224 x 224 vit_l16 512 x 512 vit_l16_in1k 88.07% 98.51%
ViT H/14 224 x 224 vit_h14 518 x 518 vit_h14_in1k 88.55% 98.69%

The models can be loaded via torch hub using the following command -

model = torch.hub.load("facebookresearch/swag", model="vit_b16_in1k")

Inference Tutorial

For a tutorial with step-by-step instructions to perform inference, follow our inference tutorial and run it locally, or Google Colab.

Live Demo

SWAG has been integrated into Huggingface Spaces 🤗 using Gradio. Try out the web demo on Hugging Face Spaces.

Credits: AK391

ImageNet 1K Evaluation

We also provide a script to evaluate the accuracy of our models on ImageNet 1K, imagenet_1k_eval.py. This script is a slightly modified version of the PyTorch ImageNet example which supports our models.

To evaluate the RegNetY 16GF IN1K model on a single node (one or more GPUs), one can simply run the following command -

python imagenet_1k_eval.py -m regnety_16gf_in1k -r 384 -b 400 /path/to/imagenet_1k/root/

Note that we specify a 384 x 384 resolution since that was the model's training resolution, and also specify a mini-batch size of 400, which is distributed over all the GPUs in the node. For larger models or with fewer GPUs, the batch size will need to be reduced. See the PyTorch ImageNet example README for more details.

Citation

If you use the SWAG models or if the work is useful in your research, please give us a star and cite:

@misc{singh2022revisiting,
      title={Revisiting Weakly Supervised Pre-Training of Visual Perception Models}, 
      author={Singh, Mannat and Gustafson, Laura and Adcock, Aaron and Reis, Vinicius de Freitas and Gedik, Bugra and Kosaraju, Raj Prateek and Mahajan, Dhruv and Girshick, Ross and Doll{\'a}r, Piotr and van der Maaten, Laurens},
      journal={arXiv preprint arXiv:2201.08371},
      year={2022}
}

License

SWAG models are released under the CC-BY-NC 4.0 license. See LICENSE for additional details.

Owner
Meta Research
Meta Research
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic

NAVER/LINE Vision 30 Dec 06, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

445 Jan 02, 2023
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022