K-FACE Analysis Project on Pytorch

Related tags

Deep Learningmixface
Overview

Installation

Setup with Conda

# create a new environment
conda create --name insightKface python=3.7 # or over
conda activate insightKface

#install the appropriate cuda version of pytorch(https://pytorch.org/)
#example:
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

# install requirements
pip install -r requirements.txt

Data prepration

K-FACE Database

K-FACE AI-hub.

Detail configuration about K-FACE is provided in the paper below.

K-FACE: A Large-Scale KIST Face Database in Consideration with Unconstrained Environments

K-FACE sample images

title

Structure of the K-FACE database

title

Configuration of K-FACE

Configuration_of_KFACE

Detection & Alignment on K-FACE

"""
    ###################################################################

    K-Face : Korean Facial Image AI Dataset
    url    : http://www.aihub.or.kr/aidata/73

    Directory structure : High-ID-Accessories-Lux-Emotion
    ID example          : '19062421' ... '19101513' len 400
    Accessories example : 'S001', 'S002' .. 'S006'  len 6
    Lux example         : 'L1', 'L2' .. 'L30'       len 30
    Emotion example     : 'E01', 'E02', 'E03'       len 3
    
    ###################################################################
"""

# example
cd detection

python align_kfaces.py --ori_data_path '/data/FACE/KFACE/High' --detected_data_path 'kface_retina_align_112x112'

Training and test datasets on K-FACE

Train ID Accessories Lux Expression Pose #Image Variance
T1 A1 1000 E1 C4-10 2,590 Very Low
T2 A1-2 400-1000 E1 C4-10 46,620 Low
T3 A1-A4 200-1000 E1-2 C4-13 654,160 Middle
T4 A1-A6 40-1000 E1-3 C1-20 3,862,800 High
Test ID Accessories Lux Expression Pose #Pairs Variance
Q1 A1 1000 E1 C4-10 1,000 Very Low
Q2 A1-2 400-1000 E1 C4-10 100,000 Low
Q3 A1-4 200-1000 E1-2 C4-13 100,000 Middle
Q4 A1-6 40-1000 E1-3 C1-20 100,000 High

MS1M-RetinaFace (MS1M-R)

MS1M-RetinaFace download link:

  1. The Lightweight Face Recognition Challenge & Workshop.

  2. https://github.com/deepinsight/insightface/wiki/Dataset-Zoo

#Preprocess 'train.rec' and 'train.idx' to 'jpg'

# example
cd detection

python rec2image.py --include '/data/FACE/ms1m-retinaface-t1/' --output 'MS1M-RetinaFace'

Inference

After downloading the pretrained model, run test.py.

Pretrained Model

For all experiments, ResNet-34 was chosen as the baseline backbone.

The model was trained on KFACE

Head&Loss Q1 Q2 Q3 Q4
ArcFace (s=16, m=0.25) 98.30 94.77 87.87 85.41
SN-pair (s=64) 99.20 95.01 91.84 89.74
MixFace (e=1e-22, m=0.25) 100 96.37 92.36 89.80

Note:

  • For ArcFace, We tested (s,m)={(16,0.5), (32,0.25), (64,0.25), (32,0.5), (64,0.5)}, but the model was not trained properly So, we apply (s,m)=(16,0.25).
cd recognition

# example
python test.py --weights 'kface.mixface.1e-22m0.25.best.pt' --dataset 'kface' --data_cfg 'data/KFACE/kface.T4.yaml'

The model was trained on MS1M-R

Head&Loss Q2 Q3 Q4 LFW CFP-FP AgeDB-30
ArcFace (s=64, m=0.5) 98.71 86.60 82.03 99.80 98.41 98.80
SN-pair (s=64) 92.85 76.36 70.08 99.55 96.20 95.46
MixFace (e=1e-22, m=0.5) 97.36 82.89 76.95 99.68 97.74 97.25
cd recognition

# example
python test.py --weights 'face.mixface.1e-22m0.5.best.pt' --dataset 'face' --data_cfg 'data/face.all.yaml'

The model was trained on MS1M-R+T4

Head&Loss Q2 Q3 Q4 LFW CFP-FP AgeDB-30
ArcFace (s=8, m=0.25) 76.58 73.13 71.38 99.46 96.75 93.83
SN-pair (s=64) 98.37 94.98 93.33 99.45 94.90 93.45
MixFace (e=1e-22, m=0.5) 99.27 96.85 94.79 99.53 96.32 95.56

Note:

  • For ArcFace, we tested (s,m)={(8, 0.5), (16, 0.25), (16,0.5), (32,0.25), (64,0.25), (32,0.5), (64,0.5)}, but the model was not trained properly So, we apply (s,m)=(8,0.25).
cd recognition

# example
python test.py --weights 'merge.mixface.1e-22m0.5.best.pt' --dataset 'merge' --data_cfg 'data/merge.yaml'

Training

Multi-GPU DataParallel Mode

Example script for training on KFACE

cd recognition

# example 
python train.py --dataset 'kface' --head 'mixface' --data_cfg 'data/KFACE/kface.T4.yaml' --hyp 'data/face.hyp.yaml' --head_cfg 'models/head.kface.cfg.yaml' --name 'example' --device 0,1

Multi-GPU DistributedDataParallel Mode

Example script for training on KFACE

cd recognition

# example
python -m torch.distributed.launch --nproc_per_node 2 train.py --dataset 'kface' --head 'mixface' --data_cfg 'data/KFACE/kface.T4.yaml' --hyp 'data/face.hyp.yaml' --head_cfg 'models/head.kface.cfg.yaml' --name 'example' --device 0,1

Note:

  • For MS1M-R, change args --dataset face, --data_cfg data/face.all.yaml, and --head_cfg model/head.face.cfg.yaml.
  • For MS1M-R+T4, change args --dataset merge, --data_cfg data/merge.yaml, and --head_cfg model/head.merge.cfg.yaml.
  • The args --nodrop should be used if you train with the metric loss(e.g., SN-pair, N-pair, etc.) on MS1M-R or MS1M-R+T4.
  • The args --double should be used if you train with the metric loss(e.g., SN-pair, N-pair, etc.) or MixFace on MS1M-R or MS1M-R+T4.
  • DistributedDataParallel is only available to classification loss(e.g., arcface, cosface, etc.)

Reference code

Thanks for these source codes porviding me with knowledges to complete this repository.

  1. https://github.com/biubug6/Pytorch_Retinaface.
  2. https://github.com/deepinsight/insightface.
  3. https://github.com/ultralytics/yolov5
Owner
Jung Jun Uk
Jung Jun Uk
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Annotate datasets with a semi-trained or fully trained YOLOv5 model

YOLOv5 Auto Annotator Annotate datasets with a semi-trained or fully trained YOLOv5 model Prerequisites Ubuntu =20.04 Python =3.7 System dependencie

Akash James 3 May 14, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
Camview - A CLI-tool used to stream CCTV online footage based on URL params

CamView A CLI-tool used to stream CCTV online footage based on URL params Get St

Finn Lancaster 54 Dec 09, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022