Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Overview

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Official PyTorch Implementation of the paper Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Youcai Zhang, Yuhao Cheng, Xinyu Huang, Fei Wen, Rui Feng, Yaqian Li, Yandong Guo
OPPO Research Institute, Shanghai Jiao Tong University, Fudan University

Abstract

Multi-label learning in the presence of missing labels(MLML) is a challenging problem. Existing methods mainly focus on the design of network structures or training schemes, which increase the complexity of implementation. This work seeks to fulfill the potential of loss function in MLML without increasing the procedure and complexity. Toward this end, we propose two simple yet effective methods via robust loss design based on an observation that a model can identify missing labels during training with a high precision. The first is a novel robust loss for negatives, namely the Hill loss, which re-weights negatives in the shape of a hill to alleviate the effect of false negatives. The second is a self-paced loss correction (SPLC) method, which uses a loss derived from the maximum likelihood criterion under an approximate distribution of missing labels. Comprehensive experiments on a vast range of multi-label image classification datasets demonstrate that our methods can remarkably boost the performance of MLML and achieve new state-of-the-art loss functions in MLML.

Credit to previous work

This repository is built upon the code base of ASL, thanks very much!

Datasets

We construct the training sets of missing labels by randomly dropping positive labels of each training image with different ratios.

samples classes Labels avg. label/img File
COCO-full labels 82,081 80 241,035 2.9 coco_train_full.txt
COCO-75% labels left 82,081 80 181,422 2.2 coco_train_0.75left.txt
COCO-40% labels left 82,081 80 96,251 1.2 coco_train_0.4left.txt
COCO-single label 82,081 80 82,081 1.0 coco_train_singlelabel.txt

Loss Implementation

In this PyTorch file, we provide implementations of our loss functions: Hill and SPLC. The loss functions take logits (predicted logits before sigmoid) and targets as input, and return the loss. Note that SPLC also takes current training epoch as input.

  • class Hill(nn.Module)
  • class SPLC(nn.Module)

Training Code

Training model by selecting different losses:

python train.py --loss Hill --data {path to dataset} --dataset {select training dataset}
python train.py --loss SPLC --data {path to dataset} --dataset {select training dataset}

For example:

python train.py --loss Hill --data '/home/MSCOCO_2014/' --dataset './dataset/coco_train_0.4left.txt'

Validation Code

We provide validation code that reproduces results reported in the paper on MS-COCO:

python validate.py --model_path {path to model to validate} --data {path to dataset}

Citation

  @misc{zhang2021simple,
        title={Simple and Robust Loss Design for Multi-Label Learning with Missing Labels}, 
        author={Youcai Zhang and Yuhao Cheng and Xinyu Huang and Fei Wen and Rui Feng and Yaqian Li and Yandong Guo},
        year={2021},
        eprint={2112.07368},
        archivePrefix={arXiv},
        primaryClass={cs.LG}
  }
Owner
Xinyu Huang
Xinyu Huang
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023