Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Overview

Bridging Multi-Task Learning and Meta-Learning

Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation" by Haoxiang Wang, Han Zhao, and Bo Li from UIUC. [arXiv:2106.09017]

This repo contains our efficient implementation of multi-task learning (MTL) for few-shot learning benchmarks. Our empirical studies show that our efficient MTL implementation can match the state-of-the-art gradient-based meta-learning algorithms, while enjoying an order of magnitude less training time.

If you find this repo useful for your research, please consider citing our paper

@inproceedings{wang2021bridging,
  title={Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation},
  author={Wang, Haoxiang and Zhao, Han and Li, Bo},
  booktitle={International Conference on Machine Learning},
  year={2021},
  organization={PMLR}
}

Installation

This repo was tested with Ubuntu 18.04, Python 3.7 & 3.8 (Anaconda version), Pytorch 1.8 with CUDA 10 & 11.

Required Packages

  • Common Packages (covered by Anaconda): numpy, scikit-learn, tqdm, etc.
  • Pytorch packages: pytorch, torchvision, pytorch-lightning (a PyTorch wrapper), pytorch-optimizer (a collection of optimizers for Pytorch)
  • Other packages: learn2learn (a meta-learning codebase), WandB (a smart logger to visualize and track machine learning experiments)

Installation Tutorial:

  1. Install the Conda package manager with Anaconda following this webpage.

  2. In the Conda environment, install PyTorch and TorchVision following the official tutorial.

  3. In the Conda environment, install all other packages using the command line

    pip install pytorch-lightning==1.0.2 torch_optimizer wandb 
    
    • Currently, learn2learn is not compatible with the latest version of pytorch-lightning.
  4. Install the latest version of learn2learn by downloading its GitHub repo to a local folder

    git clone https://github.com/learnables/learn2learn.git && cd learn2learn && pip install -e .
    

Code

This repo is mainly built upon the learn2learn package (especially its pytorch-lightning version).

  • train.py: The script to train multi-task learning (and other meta-learning algorithms) on few-shot image classification benchmarks. This code is built upon this example provided by learn2learn.
  • lightning_episodic_module.py: This contains a base class LightningEpisodicModule for meta-learning. Notice that this class is built upon this implementation in learn2learn, and we add more choices of test methods, optimizers, and learning rate schedulers to this class.
  • lightning_mtl.py: This contains a class LightningMTL, which is our implementation of multi-task learning (MTL). Notice that this is a child class of LightningEpisodicModule, and it only includes the training code. Please refer to lightning_episodic_module.py for the optimizer setup and the test/validation evaluation code (e.g., fine-tuning the last layer by L2-regularized logistic regression)
  • models/: This folder is adopted from the repo RFS by Yue Wang, and it contains the implementation of multiple variants of ResNet. For a fair comparison with previous few-shot learning works, we conducted all experiments with the ResNet-12 architecture. However, one can try other architectures (e.g., ResNet-50 or WideResNet-28) to obtain possibly better performance.
  • datasets/: This is adapted from this learn2learn folder, which contains data loaders for few-shot image classification datasets. We only made a slight modification to two data loaders (mini-ImageNet and tiered-ImageNet), so we only present them here. Other data-loaders can be directly loaded from the learn2learn package.
  • benchmarks/: This is adapted from this learn2learn folder, which provides wrappers for data loaders (e.g., few-shot task construction, data augmentation). We implemented the data augmentation introduced in MetaOptNet (named as Lee19 in our code), and added some functions to accommodate the training of multi-task learning.

Logging and Checkpointing

  • Logging: We use the WandB logger, which can automatically upload all training and evaluation logs to the cloud. You need to register a free WandB account first and log in to it on your workstation/server following this tutorial. You can also turn off the sync function to make the logger purely offline. Notice that the logger we used is wrapped by Pytorch-Lightning (see this doc), and you can easily switch it to other loggers supported by Pytorch-Lighting (e.g., TensorBoard, MLflow, Comet, Neptune), since the logging functions we use in this repo is universal to all Pytorch-Lightning loggers. See this tutorial for details.
  • Checkpointing: We adopt the checkpointing functions provided by Pytorch-Lightning, which can automatically save checkpoints at the end of every epoch. Our implementation only saves the best epoch checkpoint (i.e., the epoch with the highest validation accuracy) and the last epoch checkpoint, so the disk usage of checkpoints is constant. Pytorch-Lightning can also help you load checkpoints easily.

Args and Flags

Below, we introduce multiple arguments and flags you might want to modify.

Notice that the argparser does not only parse the arguments in train.py. In addition, it also parses arguments in 'lightning_episodic_module.py' and lightning_mtl.py. Furthermore, some arguments are embedded in pytorch-lightning (e.g., --max_epochs).

  • --dataset: Currently, we support four datasets, ['mini-imagenet', 'tiered-imagenet', 'cifarfs', 'fc100']
  • --algorithm: We only provide the implementation of multi-task learning in this repo. However, you can also try other meta-learning algorithms provided by this learn2learn folder.
    • Note: in the empirical comparison of our paper, we take the officially reported performance in the original papers of these meta-learning methods (e.g., MAML, MetaOptNet), instead of running this script with the learn2learn implementation.
  • --root: The root directory that saves datasets. The default is ~/data.
  • --log_dir: The directory that saves logs and checkpoints. The defult is ~/wandb_logs
  • --gpu: The index of the GPU you want to use. Currently, our code only supports single-GPU training.
  • --norm_train_features: Normalize features (i.e., last hidden layer outputs) during training. We find this is useful for all datasets except for FC100.
  • --test_method: The default is l2, which is the L2-regularized logistic regression we use for the fine-tuning adaptation during the test phase.
  • --optim: The optimizer to use (default is 'radam', i.e., RAdam). The choice list is ['sgd', 'sgdp', 'sgdw', 'adam', 'adamw', 'adamax', 'radam', 'adabound', 'adamp']. These optimizers are adopted from PyTorch and pytorch-optimizer.
  • --scheduler: The learning rate scheduler to use (default is 'plateau', i.e., ReduceLROnPlateau). The other choice is 'step', which is the StepLR scheduler.
  • --meta_batch_size: The number of training tasks in a batch during (meta-)training.
  • --train_queries:
  • --test_shots: The number of shots during the test.
    • We only consider 5-way classification in our experiments. If you want to vary it, you can change the flags --train_ways and --test_ways.
    • Our implementation of multi-task learning does not care about the number of shots during training, since it does not split a task into query and support data. Thus --train_shots is noneffective for multi-task learning. But it is useful to other meta-learning algorithms.
  • --test_queries: The number of query samples per class in each test task (default is 30).
    • In our experiments, we adopt test_queries = 50. But this has a large GPU memory consumption, e.g., it will exceed 11GB (the limit of 1080ti and 2080ti) when running on mini-ImageNet. Thus, we set it as 30 here instead. In principle, larger test_queries leads to a more accurate estimation of the test accuracy. However, if you cannot use a large value of test_queries, you can also enlarge the following final_test_epoch_length to obtain a more accurate test accuracy estimation.
  • --final_test_epoch_length: The number of tasks for test evaluation at the end of training. Default is 2000.
  • --no_log: Running the script with this flag will turn off the logging and checkpointing. Notice that in this mode, pytorch-lightning will automatically write some checkpoint files to ./checkpoints/.
  • --max_epochs: the number of maximum training epochs.

Running

To replicate empirical results of multi-task learning shown in the paper, please run the following commands with your preferred root directory to save datasets and the GPU to use. The code can automatically download datasets to the root directory you specified.

In the following demo, we consider the root directory as /data and the GPU index as 0.

mini-ImageNet

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --meta_batch_size 2 --test_shots 5 --algorithm mtl --dataset mini-imagenet
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features  --test_shots 1 --algorithm mtl --dataset mini-imagenet
    

tiered-ImageNet

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 35 --meta_batch_size 1 --test_shots 5 --algorithm mtl --dataset tiered-imagenet
    
    • For multi-task learning, there is no query-support split during training (i.e., one can think that we "merge" query and support data for multi-task learning). Then, given the default train_queries = 5, setting --train_queries 35 makes the number of samples per class in each training task to be 40.
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 35 --meta_batch_size 2 --test_shots 1 --algorithm mtl --dataset tiered-imagenet
    

CIFAR-FS

  • 5-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --test_shots 5 --algorithm mtl --dataset cifarfs
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --norm_train_features --train_queries 15 --meta_batch_size 2 --test_shots 1 --algorithm mtl --dataset cifarfs
    

FC100

  • 5-shot

    python train.py --gpu 0 --root ~/data --test_shots 5 --algorithm mtl --dataset fc100
    
  • 1-shot

    python train.py --gpu 0 --root ~/data --train_queries 4 --train_shots 1 --meta_batch_size 1 --test_shots 1 --algorithm mtl --dataset fc100
    
    • Setting --train_queries 4 --train_shots 1 reduces the number of samples per class in each training task to be 4+1=5 for multi-task learning, since it does not have the query-support splitting.

Results

Here is an empirical comparison of our implementation of multi-task learning against MetaOptNet, a state-of-the-art gradient-based meta-learning algorithm. For more results, please refer to our paper.

Benchmarking

Efficiency comparison

We benchmarked the training cost of Multi-Task Learning and MetaOptNet on AWS-EC2 P3 instances. See our papers for more details.

  • mini-ImageNet (5-way 5-shot)
Test Accuracy GPU Hours
MetaOptNet 78.63% 85.6 hrs
Multi-Task Learning 77.72% 3.7 hrs
  • tiered-ImageNet (5-way 5-shot)

    efficiency-tiered-imagenet
    • We vary the meta_batch_size and the number of epochs and finally obtain this plot. Each dot of MTL represents the result of one configuration. With smaller meta_batch_size and the number of epochs, MTL can be 11x faster than MetaOptNet while achieving the same performance (81.55% vs. 81.56%).

Contact Information

Please contact Haoxiang Wang ([email protected]) for any questions regarding this repo.

If you have questions regarding the learn2learn codebase, please consider joining the learn2learn slack to ask the authors and contributors of learn2learn directly.

Acknowledgments

In this repo, we adopt some code from the following codebases, and we sincerely thank their authors:

  • learn2learn: This repo is built on the learn2learn codebase (more precisely, the pytorch-lightning version of learn2learn), and the implemented multi-task learning code will be pushed to learn2learn in the future. Stay tuned!
  • RFS: We adopt the implementation of neural net architectures (e.g., CNNs, ResNets) from the RFS codebase (i.e., we copied their models/ to the './models' in this repo).
Owner
AI Secure
UIUC Secure Learning Lab
AI Secure
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Generalized and Efficient Blackbox Optimization System.

OpenBox Doc | OpenBox中文文档 OpenBox: Generalized and Efficient Blackbox Optimization System OpenBox is an efficient and generalized blackbox optimizatio

DAIR Lab 238 Dec 29, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023