NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

Overview

NeuroFind

A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

Installation

please install on a linux operating system

Install both Faster R-CNN and Yolov5

git clone https://github.com/Anxum/NeuroFind.git
cd NeuroFind
git clone https://github.com/ultralytics/yolov5.git temp
mv temp/.git yolov5/.git
mv temp/* yolov5
rm -rf temp
cd yolov5
pip3 install -r requirements.txt
cd ../Faster_R-CNN
git clone https://github.com/tensorflow/models.git
pip3 install lxml
mkdir models/protoc
mv protoc-3.19.3-linux-x86_64.zip models/protoc
cd models/protoc
unzip protoc-3.19.3-linux-x86_64.zip
rm -r protoc-3.19.3-linux-x86_64.zip
cd ../research
../protoc/bin/protoc object_detection/protos/*.proto --python_out=.
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
cp object_detection/packages/tf2/setup.py .
python3 -m pip install --use-feature=2020-resolver .

Only Install Yolov5

git clone https://github.com/Anxum/NeuroFind.git
cd NeuroFind
git clone https://github.com/ultralytics/yolov5.git temp
mv temp/.git yolov5/.git
mv temp/* yolov5
rm -rf temp
cd yolov5
pip3 install -r requirements.txt 

Only Install Faster R-CNN

git clone https://github.com/Anxum/NeuroFind.git
cd NeuroFind/Faster_R-CNN
git clone https://github.com/tensorflow/models.git
pip3 install lxml
mkdir models/protoc
mv protoc-3.19.3-linux-x86_64.zip models/protoc
cd models/protoc
unzip protoc-3.19.3-linux-x86_64.zip
rm -r protoc-3.19.3-linux-x86_64.zip
cd ../research
../protoc/bin/protoc object_detection/protos/*.proto --python_out=.
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
cp object_detection/packages/tf2/setup.py .
python3 -m pip install --use-feature=2020-resolver .

Inference

YOLOv5

Faster R-CNN

Training

YOLOv5

Faster R-CNN

ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022