Deep Learning pipeline for motor-imagery classification.

Overview

BCI-ToolBox

1. Introduction

BCI-ToolBox is deep learning pipeline for motor-imagery classification.
This repo contains five models: ShallowConvNet, DeepConvNet, EEGNet, FBCNet, BCI2021.
(BCI2021 is not an official name.)

2. Installation

Environment

  • Python == 3.7.10
  • PyTorch == 1.9.0
  • mne == 0.23.0
  • braindecode == 0.5.1
  • CUDA == 11.0

Create conda environment

conda install pytorch=1.9.0 cudatoolkit=11.1 -c pytorch -c nvidia
conda install numpy pandas matplotlib pyyaml ipywidgets
pip install torchinfo braindecode moabb mne

3. Directory structure

.
├── README.md
├── base
│   ├── constructor.py
│   └── layers.py
├── configs
│   ├── BCI2021
│   │   └── default.yaml
│   ├── DeepConvNet
│   │   └── default.yaml
│   ├── EEGNet
│   │   └── default.yaml
│   ├── FBCNet
│   │   └── default.yaml
│   ├── ShallowConvNet
│   │   └── default.yaml
│   └── demo
│       ├── arch.yaml
│       ├── bci2021.yaml
│       ├── test.yaml
│       ├── train.yaml
│       └── training_params.yaml
├── data_loader
│   ├── data_generator.py
│   ├── datasets
│   │   ├── __init__.py
│   │   ├── bnci2014.py
│   │   ├── cho2017.py
│   │   ├── folder_dataset.py
│   │   ├── openbmi.py
│   │   └── tmp_dataset.py
│   └── transforms.py
├── main.py
├── models
│   ├── BCI2021
│   │   ├── BCI2021.py
│   │   └── __init__.py
│   ├── DeepConvNet
│   │   ├── DeepConvNet.py
│   │   └── __init__.py
│   ├── EEGNet
│   │   ├── EEGNet.py
│   │   └── __init__.py
│   ├── FBCNet
│   │   ├── FBCNet.py
│   │   └── __init__.py
│   ├── ShallowConvNet
│   │   ├── ShallowConvNet.py
│   │   └── __init__.py
│   ├── __init__.py
│   └── model_builder.py
├── trainers
│   ├── __init__.py
│   ├── cls_trainer.py
│   └── trainer_maker.py
└── utils
    ├── calculator.py
    ├── painter.py
    └── utils.py

4. Dataset

5. Get Started

Create wandb_key.yaml file

  • Create wandb_key.yaml file in configs directory.
    # wandb_key.yaml
    key: WANDB API keys
  • WANDB API keys can be obtained from your W&B account settings.

train

Use W&B

python main.py --config_file=configs/demo/train.yaml

Not use W&B

python main.py --config_file=configs/demo/train.yaml --no_wandb

USE GPU

python main.py --config_file=configs/demo/train.yaml --device=0  # Use GPU 0
python main.py --config_file=configs/demo/train.yaml --device=1  # Use GPU 1
python main.py --config_file=configs/demo/train.yaml --device=2  # Use GPU 2
  • GPU numbers depend on your server.

USE Sweep

# W&B
sweep_file: configs/demo/training_params.yaml
project: Demo
tags: [train]
  • Add this block to config file for finding training parameters.
# W&B
sweep_file: configs/demo/arch.yaml
sweep_type: arch
project: Demo
tags: [train]
  • Add this block to config file for finding model architecture.

test

python main.py --config_file=configs/demo/test.yaml

5. References

Owner
DongHee
Data Engineering / MLOps / AutoML
DongHee
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
Resources related to EMNLP 2021 paper "FAME: Feature-Based Adversarial Meta-Embeddings for Robust Input Representations"

FAME: Feature-based Adversarial Meta-Embeddings This is the companion code for the experiments reported in the paper "FAME: Feature-Based Adversarial

Bosch Research 11 Nov 27, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023