(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

Overview

(CVPR 2022) TokenCut

Pytorch implementation of Tokencut:

Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut

Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L. Crowley, Dominique Vaufreydaz

[Project page] [Paper] Colab demo Hugging Face Spaces

TokenCut teaser

If our project is helpful for your research, please consider citing :

@inproceedings{wang2022tokencut,
          title={Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut},
          author={Wang, Yangtao and Shen, Xi and Hu, Shell Xu and Yuan, Yuan and Crowley, James L. and Vaufreydaz, Dominique},
          booktitle={Conference on Computer Vision and Pattern Recognition}
          year={2022}
        }

Table of Content

1. Updates

03/10/2022 Creating a 480p Demo using Gradio. Try out the Web Demo: Hugging Face Spaces

Internet image results:

TokenCut visualizations TokenCut visualizations TokenCut visualizations TokenCut visualizations

02/26/2022 Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo: Hugging Face Spaces

02/26/2022 A simple TokenCut Colab Demo is available.

02/21/2022 Initial commit: Code of TokenCut is released, including evaluation of unsupervised object discovery, unsupervised saliency object detection, weakly supervised object locolization.

2. Installation

2.1 Dependencies

This code was implemented with Python 3.7, PyTorch 1.7.1 and CUDA 11.2. Please refer to the official installation. If CUDA 10.2 has been properly installed :

pip install torch==1.7.1 torchvision==0.8.2

In order to install the additionnal dependencies, please launch the following command:

pip install -r requirements.txt

2.2 Data

We provide quick download commands in DOWNLOAD_DATA.md for VOC2007, VOC2012, COCO, CUB, ImageNet, ECSSD, DUTS and DUT-OMRON as well as DINO checkpoints.

3. Quick Start

3.1 Detecting an object in one image

We provide TokenCut visualization for bounding box prediction and attention map. Using all for all visualization results.

python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize pred
python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize attn
python main_tokencut.py --image_path examples/VOC07_000036.jpg --visualize all 

3.2 Segmenting a salient region in one image

We provide TokenCut segmentation results as follows:

cd unsupervised_saliency_detection 
python get_saliency.py --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --vit-arch small --patch-size 16 --img-path ../examples/VOC07_000036.jpg --out-dir ./output

4. Evaluation

Following are the different steps to reproduce the results of TokenCut presented in the paper.

4.1 Unsupervised object discovery

TokenCut visualizations TokenCut visualizations TokenCut visualizations

PASCAL-VOC

In order to apply TokenCut and compute corloc results (VOC07 68.8, VOC12 72.1), please launch:

python main_tokencut.py --dataset VOC07 --set trainval
python main_tokencut.py --dataset VOC12 --set trainval

If you want to extract Dino features, which corresponds to the KEY features in DINO:

mkdir features
python main_lost.py --dataset VOC07 --set trainval --save-feat-dir features/VOC2007

COCO

Results are provided given the 2014 annotations following previous works. The following command line allows you to get results on the subset of 20k images of the COCO dataset (corloc 58.8), following previous litterature. To be noted that the 20k images are a subset of the train set.

python main_tokencut.py --dataset COCO20k --set train

Different models

We have tested the method on different setups of the VIT model, corloc results are presented in the following table (more can be found in the paper).

arch pre-training dataset
VOC07 VOC12 COCO20k
ViT-S/16 DINO 68.8 72.1 58.8
ViT-S/8 DINO 67.3 71.6 60.7
ViT-B/16 DINO 68.8 72.4 59.0

Previous results on the dataset VOC07 can be obtained by launching:

python main_tokencut.py --dataset VOC07 --set trainval #VIT-S/16
python main_tokencut.py --dataset VOC07 --set trainval --patch_size 8 #VIT-S/8
python main_tokencut.py --dataset VOC07 --set trainval --arch vit_base #VIT-B/16

4.2 Unsupervised saliency detection

TokenCut visualizations TokenCut visualizations TokenCut visualizations

To evaluate on ECSSD, DUTS, DUT_OMRON dataset:

python get_saliency.py --out-dir ECSSD --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset ECSSD

python get_saliency.py --out-dir DUTS --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset DUTS

python get_saliency.py --out-dir DUT --sigma-spatial 16 --sigma-luma 16 --sigma-chroma 8 --nb-vis 1 --vit-arch small --patch-size 16 --dataset DUT

This should give:

Method ECSSD DUTS DUT-OMRON
maxF IoU Acc maxF IoU Acc maxF IoU Acc
TokenCut 80.3 71.2 91.8 67.2 57.6 90.3 60.0 53.3 88.0
TokenCut + BS 87.4 77.2 93.4 75.5 62,4 91.4 69.7 61.8 89.7

4.3 Weakly supervised object detection

TokenCut visualizations TokenCut visualizations TokenCut visualizations

Fintune DINO small on CUB

To finetune ViT-S/16 on CUB on a single node with 4 gpus for 1000 epochs run:

python -m torch.distributed.launch --nproc_per_node=4 main.py --data_path /path/to/data --batch_size_per_gpu 256 --dataset cub --weight_decay 0.005 --pretrained_weights ./dino_deitsmall16_pretrain.pth --epoch 1000 --output_dir ./path/to/checkpoin --lr 2e-4 --warmup-epochs 50 --num_labels 200 --num_workers 16 --n_last_blocks 1 --avgpool_patchtokens true --arch vit_small --patch_size 16

Evaluation on CUB

To evaluate a fine-tuned ViT-S/16 on CUB val with a single GPU run:

python eval.py --pretrained_weights ./path/to/checkpoint --dataset cub --data_path ./path/to/data --batch_size_per_gpu 1 --no_center_crop

This should give:

Top1_cls: 79.12, top5_cls94.80, gt_loc: 0.914, top1_loc:0.723

Evaluate on Imagenet

To Evaluate ViT-S/16 finetuned on ImageNet val with a single GPU run:

python eval.py --pretrained_weights /path/to/checkpoint --classifier_weights /path/to/linear_weights--dataset imagenet --data_path ./path/to/data --batch_size_per_gpu 1 --num_labels 1000 --batch_size_per_gpu 1 --no_center_crop --input_size 256 --tau 0.2 --patch_size 16 --arch vit_small

5. Acknowledgement

TokenCut code is built on top of LOST, DINO, Segswap, and Bilateral_Sovlver. We would like to sincerely thanks those authors for their great works.

Owner
YANGTAO WANG
PhD, Computer Vision, Deep Learning
YANGTAO WANG
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Setup freqtrade/freqUI on Heroku

UNMAINTAINED - REPO MOVED TO https://github.com/p-zombie/freqtrade Creating the app git clone https://github.com/joaorafaelm/freqtrade.git && cd freqt

JoĂŁo 51 Aug 29, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
source code of “Visual Saliency Transformer” (ICCV2021)

Visual Saliency Transformer (VST) source code for our ICCV 2021 paper “Visual Saliency Transformer” by Nian Liu, Ni Zhang, Kaiyuan Wan, Junwei Han, an

89 Dec 21, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022