GPU Accelerated Non-rigid ICP for surface registration

Overview

GPU Accelerated Non-rigid ICP for surface registration

Introduction

Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve sparse least square problem, which is time consuming. In this repo, we implement a pytorch version NICP algorithm based on paper Amberg et al. Detailedly, we leverage the AMSGrad to optimize the linear regresssion, and then found nearest points iteratively. Additionally, we smooth the calculated mesh with laplacian smoothness term. With laplacian smoothness term, the wireframe is also more neat.


Quick Start

install

We use python3.8 and cuda10.2 for implementation. The code is tested on Ubuntu 20.04.

  • The pytorch3d cannot be installed directly from pip install pytorch3d, for the installation of pytorch3d, see pytorch3d.
  • For other packages, run
pip install -r requirements.txt
  • For the template face model, currently we use a processed version of BFM face model from 3DMMfitting-pytorch, download the BFM09_model_info.mat from 3DMMfitting-pytorch and put it into the ./BFM folder.
  • For demo, run
python demo_nicp.py

we show demo for NICP mesh2mesh and NICP mesh2pointcloud. We have two param sets for registration:

milestones = set([50, 80, 100, 110, 120, 130, 140])
stiffness_weights = np.array([50, 20, 5, 2, 0.8, 0.5, 0.35, 0.2])
landmark_weights = np.array([5, 2, 0.5, 0, 0, 0, 0, 0])

This param set is used for registration on fine grained mesh

milestones = set([50, 100])
stiffness_weights = np.array([50, 20, 5])
landmark_weights = np.array([50, 20, 5])

This param set is used for registration on noisy point clouds

Templated Model

You can also use your own templated face model with manually specified landmarks.

Todo

Currently we write some batchwise functions, but batchwise NICP is not supported now. We will support batch NICP in further releases.

You might also like...
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

Code for
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Weakly Supervised Learning of Rigid 3D Scene Flow
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these environments (PPO, SAC, evolutionary strategy, and direct trajectory optimization are implemented).

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Comments
  • Lack of file “BFM09_model_info.mat”

    Lack of file “BFM09_model_info.mat”

    Traceback (most recent call last): File "demo_nicp.py", line 28, in bfm_meshes, bfm_lm_index = load_bfm_model(torch.device('cuda:0')) File "/data/pytorch-nicp/bfm_model.py", line 15, in load_bfm_model bfm_meta_data = loadmat('BFM/BFM09_model_info.mat') File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 224, in loadmat with _open_file_context(file_name, appendmat) as f: File "/root/anaconda3/envs/pytorch3d/lib/python3.8/contextlib.py", line 113, in enter return next(self.gen) File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 17, in _open_file_context f, opened = _open_file(file_like, appendmat, mode) File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 45, in _open_file return open(file_like, mode), True FileNotFoundError: [Errno 2] No such file or directory: 'BFM/BFM09_model_info.mat'

    In 3DMMfitting-pytorch, there are only these files: BFM_exp_idx.mat BFM_front_idx.mat facemodel_info.mat README.md select_vertex_id.mat similarity_Lm3D_all.mat std_exp.txt

    opened by 675492062 2
  • What is the expected time needed for running demo_nicp.py?

    What is the expected time needed for running demo_nicp.py?

    Hello,

    On my computer it seems quite slow to run demo_nicp.py. At least it took more than 1 minutes to get final.obj. Is it correct?

    I ranAMM_NRR for non-rigit ICP registration with two 7000 vertices meshes. It needs ca 1 second with CPU on my computer. With GPU, it might be possible to do the same work in less than 100 ms?

    Thank you!

    opened by 1939938853 0
  • Hi, with landmarks: `landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()`, maybe you can  reshape landmarks from torch.Size([1, 1, 68, 2]) to  torch.Size([1, 68, 2])

    Hi, with landmarks: `landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()`, maybe you can reshape landmarks from torch.Size([1, 1, 68, 2]) to torch.Size([1, 68, 2])

    Hi, with landmarks: landmarks = torch.from_numpy(np.array(landmarks)).to(device).long(), maybe you can reshape landmarks from torch.Size([1, 1, 68, 2]) to torch.Size([1, 68, 2])

    Originally posted by @wuhaozhe in https://github.com/wuhaozhe/pytorch-nicp/issues/3#issuecomment-971453681 hi!I got output as torch.Size([1, 68, 512, 3]) torch.Size([1, 68, 2]) torch.Size([1, 512, 512, 3]) I think the shape of following tensors are right, but I meet the same problem. lm_vertex = torch.gather(lm_vertex, 2, column_index) RuntimeError: CUDA error: device-side assert triggered

    landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()
    
    row_index = landmarks[:, :, 1].view(landmarks.shape[0], -1)
    column_index = landmarks[:, :, 0].view(landmarks.shape[0], -1)
    row_index = row_index.unsqueeze(2).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], shape_img.shape[2], shape_img.shape[3])
    column_index = column_index.unsqueeze(1).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], landmarks.shape[1], shape_img.shape[3])
    print(row_index.shape, landmarks.shape, shape_img.shape)
    
    opened by alicedingyueming 1
  • RuntimeError

    RuntimeError

    Traceback (most recent call last): File "demo_nicp.py", line 27, in target_lm_index, lm_mask = get_mesh_landmark(norm_meshes, dummy_render) File "/data/pytorch-nicp/landmark.py", line 37, in get_mesh_landmark row_index = row_index.unsqueeze(2).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], shape_img.shape[2], shape_img.shape[3]) RuntimeError: The expanded size of the tensor (1) must match the existing size (2) at non-singleton dimension 1. Target sizes: [1, 1, 512, 3]. Tensor sizes: [1, 2, 1, 1]

    I have already configure the environment,but it seems have some problems in the code.What can I do to solve this problem.

    opened by 675492062 8
Releases(v0.1)
Owner
Haozhe Wu
Research interests in Computer Vision and Machine Learning.
Haozhe Wu
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation Code in conjunction with the publication: Contrastive Representation Lea

Computer Vision Group, Albert-Ludwigs-Universität Freiburg 38 Dec 13, 2022