"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

Overview

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image

[Paper] [Website]

Pipeline

Code

Environment

pip install -r requirements.txt

Dataset Preparation

Please download the datasets from these links:

Please download the depth from here: https://drive.google.com/drive/folders/13Lc79Ox0k9Ih2o0Y9e_g_ky41Nx40eJw?usp=sharing

Training

If you meet OOM issue, try:

  1. enable precision=16
  2. reduce the patch size --patch_size (or --patch_size_x, --patch_size_y) and enlarge the stride size --sH, --sW
NeRF synthetic
  • Step 1

    python train.py  --dataset_name blender_ray_patch_1image_rot3d  --root_dir  ../../dataset/nerf_synthetic/lego   --N_importance 64 --img_wh 400 400 --num_epochs 3000 --batch_size 1  --optimizer adam --lr 2e-4  --lr_scheduler steplr --decay_step 1000 2000 --decay_gamma 0.5  --exp_name lego_s6 --with_ref --patch_size 64 --sW 6 --sH 6 --proj_weight 1 --depth_smooth_weight 0  --dis_weight 0 --num_gpus 4 --load_depth --depth_type nerf --model sinnerf --depth_weight 8 --vit_weight 10 --scan 4
    
  • Step 2

    python train.py  --dataset_name blender_ray_patch_1image_rot3d  --root_dir  ../../dataset/nerf_synthetic/lego   --N_importance 64 --img_wh 400 400 --num_epochs 3000 --batch_size 1  --optimizer adam --lr 1e-4  --lr_scheduler steplr --decay_step 1000 2000 --decay_gamma 0.5  --exp_name lego_s6_4ft --with_ref --patch_size 64 --sW 4 --sH 4 --proj_weight 1 --depth_smooth_weight 0.1  --dis_weight 0.1 --num_gpus 4 --load_depth --depth_type nerf --model sinnerf --depth_weight 8 --vit_weight 0 --pt_model xxx.ckpt --nerf_only  --scan 4
    
LLFF
  • Step 1

    python train.py  --dataset_name llff_ray_patch_1image_proj  --root_dir  ../../dataset/nerf_llff_data/room   --N_importance 64 --img_wh 504 378 --num_epochs 3000 --batch_size 1  --optimizer adam --lr 2e-4  --lr_scheduler steplr --decay_step 1000 2000 --decay_gamma 0.5  --exp_name llff_room_s4 --with_ref --patch_size_x 63 --patch_size_y 84 --sW 4 --sH 4 --proj_weight 1 --depth_smooth_weight 0  --dis_weight 0 --num_gpus 4 --load_depth --depth_type nerf --model sinnerf --depth_weight 8 --vit_weight 10
    
  • Step 2

    python train.py  --dataset_name llff_ray_patch_1image_proj  --root_dir  ../../dataset/nerf_llff_data/room   --N_importance 64 --img_wh 504 378 --num_epochs 3000 --batch_size 1  --optimizer adam --lr 1e-4  --lr_scheduler steplr --decay_step 1000 2000 --decay_gamma 0.5  --exp_name llff_room_s4_2ft --with_ref --patch_size_x 63 --patch_size_y 84 --sW 2 --sH 2 --proj_weight 1 --depth_smooth_weight 0.1  --dis_weight 0.1 --num_gpus 4 --load_depth --depth_type nerf --model sinnerf --depth_weight 8 --vit_weight 0 --pt_model xxx.ckpt --nerf_only
    
DTU
  • Step 1

    python train.py  --dataset_name dtu_proj  --root_dir  ../../dataset/mvs_training/dtu   --N_importance 64 --img_wh 640 512 --num_epochs 3000 --batch_size 1  --optimizer adam --lr 2e-4  --lr_scheduler steplr --decay_step 1000 2000 --decay_gamma 0.5  --exp_name dtu_scan4_s8 --with_ref --patch_size_y 70 --patch_size_x 56 --sW 8 --sH 8 --proj_weight 1 --depth_smooth_weight 0  --dis_weight 0 --num_gpus 4 --load_depth --depth_type nerf --model sinnerf --depth_weight 8 --vit_weight 10 --scan 4
    
  • Step 2

    python train.py  --dataset_name dtu_proj  --root_dir  ../../dataset/mvs_training/dtu   --N_importance 64 --img_wh 640 512 --num_epochs 3000 --batch_size 1  --optimizer adam --lr 1e-4  --lr_scheduler steplr --decay_step 1000 2000 --decay_gamma 0.5  --exp_name dtu_scan4_s8_4ft --with_ref --patch_size_y 70 --patch_size_x 56 --sW 4 --sH 4 --proj_weight 1 --depth_smooth_weight 0.1  --dis_weight 0.1 --num_gpus 4 --load_depth --depth_type nerf --model sinnerf --depth_weight 8 --vit_weight 0 --pt_model xxx.ckpt --nerf_only  --scan 4
    

More finetuning with smaller strides benefits reconstruction quality.

Testing

python eval.py  --dataset_name llff  --root_dir /dataset/nerf_llff_data/room --N_importance 64 --img_wh 504 378 --model nerf --ckpt_path ckpts/room.ckpt --timestamp test

Acknowledgement

Codebase based on https://github.com/kwea123/nerf_pl . Thanks for sharing!

Citation

If you find this repo is helpful, please cite:


@InProceedings{Xu_2022_SinNeRF,
author = {Xu, Dejia and Jiang, Yifan and Wang, Peihao and Fan, Zhiwen and Shi, Humphrey and Wang, Zhangyang},
title = {SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image},
journal={arXiv preprint arXiv:2204.00928},
year={2022}
}

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
Music Generation using Neural Networks Streamlit App

Music_Gen_Streamlit "Music Generation using Neural Networks" Streamlit App TO DO: Make a run_app.sh Introduction [~5 min] (Sohaib) Team Member names/i

Muhammad Sohaib Arshid 6 Aug 09, 2022
Yolox-bytetrack-sample - Python sample of MOT (Multiple Object Tracking) using YOLOX and ByteTrack

yolox-bytetrack-sample YOLOXとByteTrackを用いたMOT(Multiple Object Tracking)のPythonサン

KazuhitoTakahashi 12 Nov 09, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022