Serving PyTorch 1.0 Models as a Web Server in C++

Overview

Serving PyTorch Models in C++

  • This repository contains various examples to perform inference using PyTorch C++ API.
  • Run git clone https://github.com/Wizaron/pytorch-cpp-inference in order to clone this repository.

Environment

  1. Dockerfiles can be found at docker directory. There are two dockerfiles; one for cpu and the other for cuda10. In order to build docker image, you should go to docker/cpu or docker/cuda10 directory and run docker build -t <docker-image-name> ..
  2. After creation of the docker image, you should create a docker container via docker run -v <directory-that-this-repository-resides>:<target-directory-in-docker-container> -p 8181:8181 -it <docker-image-name> (We will use 8181 to serve our PyTorch C++ model).
  3. Inside docker container, go to the directory that this repository resides.
  4. Download libtorch from PyTorch Website (CPU : https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-1.3.1%2Bcpu.zip - CUDA10 : https://download.pytorch.org/libtorch/cu101/libtorch-cxx11-abi-shared-with-deps-1.3.1.zip).
  5. Unzip libtorch via unzip. This will create libtorch directory that contains torch shared libraries and headers.

Code Structure

  • models directory stores PyTorch models.
  • libtorch directory stores C++ torch headers and shared libraries to link the model against PyTorch.
  • utils directory stores various utility function to perform inference in C++.
  • inference-cpp directory stores codes to perform inference.

Exporting PyTorch ScriptModule

  • In order to export torch.jit.ScriptModule of ResNet18 to perform C++ inference, go to models/resnet directory and run python3 resnet.py. It will download pretrained ResNet18 model on ImageNet and create models/resnet_model_cpu.pth and (optionally) models/resnet_model_gpu.pth which we will use in C++ inference.

Serving the C++ Model

  • We can either serve the model as a single executable or as a web server.

Single Executable

  • In order to build a single executable for inference:
    1. Go to inference-cpp/cnn-classification directory.
    2. Run ./build.sh in order to build executable, named as predict.
    3. Run the executable via ./predict <path-to-image> <path-to-exported-script-module> <path-to-labels-file> <gpu-flag{true/false}>.
    4. Example: ./predict image.jpeg ../../models/resnet/resnet_model_cpu.pth ../../models/resnet/labels.txt false

Web Server

  • In order to build a web server for production:
    1. Go to inference-cpp/cnn-classification/server directory.
    2. Run ./build.sh in order to build web server, named as predict.
    3. Run the binary via ./predict <path-to-exported-script-module> <path-to-labels-file> <gpu-flag{true/false}> (It will serve the model on http://localhost:8181/predict).
    4. Example: ./predict ../../../models/resnet/resnet_model_cpu.pth ../../../models/resnet/labels.txt false
    5. In order to make a request, open a new tab and run python test_api.py (It will make a request to localhost:8181/predict).

Acknowledgement

  1. pytorch
  2. crow
  3. tensorflow_cpp_object_detection_web_server
Owner
Onur Kaplan
Onur Kaplan
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually.

Virtual Dance Reality Stage is a feature that offers you to share a stage with another user virtually. It uses the concept of Image Background Removal using DeepLab Architecture (based on Semantic Se

Devashi Choudhary 5 Aug 24, 2022
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021