Serving PyTorch 1.0 Models as a Web Server in C++

Overview

Serving PyTorch Models in C++

  • This repository contains various examples to perform inference using PyTorch C++ API.
  • Run git clone https://github.com/Wizaron/pytorch-cpp-inference in order to clone this repository.

Environment

  1. Dockerfiles can be found at docker directory. There are two dockerfiles; one for cpu and the other for cuda10. In order to build docker image, you should go to docker/cpu or docker/cuda10 directory and run docker build -t <docker-image-name> ..
  2. After creation of the docker image, you should create a docker container via docker run -v <directory-that-this-repository-resides>:<target-directory-in-docker-container> -p 8181:8181 -it <docker-image-name> (We will use 8181 to serve our PyTorch C++ model).
  3. Inside docker container, go to the directory that this repository resides.
  4. Download libtorch from PyTorch Website (CPU : https://download.pytorch.org/libtorch/cpu/libtorch-cxx11-abi-shared-with-deps-1.3.1%2Bcpu.zip - CUDA10 : https://download.pytorch.org/libtorch/cu101/libtorch-cxx11-abi-shared-with-deps-1.3.1.zip).
  5. Unzip libtorch via unzip. This will create libtorch directory that contains torch shared libraries and headers.

Code Structure

  • models directory stores PyTorch models.
  • libtorch directory stores C++ torch headers and shared libraries to link the model against PyTorch.
  • utils directory stores various utility function to perform inference in C++.
  • inference-cpp directory stores codes to perform inference.

Exporting PyTorch ScriptModule

  • In order to export torch.jit.ScriptModule of ResNet18 to perform C++ inference, go to models/resnet directory and run python3 resnet.py. It will download pretrained ResNet18 model on ImageNet and create models/resnet_model_cpu.pth and (optionally) models/resnet_model_gpu.pth which we will use in C++ inference.

Serving the C++ Model

  • We can either serve the model as a single executable or as a web server.

Single Executable

  • In order to build a single executable for inference:
    1. Go to inference-cpp/cnn-classification directory.
    2. Run ./build.sh in order to build executable, named as predict.
    3. Run the executable via ./predict <path-to-image> <path-to-exported-script-module> <path-to-labels-file> <gpu-flag{true/false}>.
    4. Example: ./predict image.jpeg ../../models/resnet/resnet_model_cpu.pth ../../models/resnet/labels.txt false

Web Server

  • In order to build a web server for production:
    1. Go to inference-cpp/cnn-classification/server directory.
    2. Run ./build.sh in order to build web server, named as predict.
    3. Run the binary via ./predict <path-to-exported-script-module> <path-to-labels-file> <gpu-flag{true/false}> (It will serve the model on http://localhost:8181/predict).
    4. Example: ./predict ../../../models/resnet/resnet_model_cpu.pth ../../../models/resnet/labels.txt false
    5. In order to make a request, open a new tab and run python test_api.py (It will make a request to localhost:8181/predict).

Acknowledgement

  1. pytorch
  2. crow
  3. tensorflow_cpp_object_detection_web_server
Owner
Onur Kaplan
Onur Kaplan
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Unofficial Implement PU-Transformer

PU-Transformer-pytorch Pytorch unofficial implementation of PU-Transformer (PU-Transformer: Point Cloud Upsampling Transformer) https://arxiv.org/abs/

Lee Hyung Jun 7 Sep 21, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022