The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Overview

Introduction

This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is published in NeurIPS 2021.

Citation

We kindly ask anybody who uses this code to cite the following bibtex:

@inproceedings{
    ma2021finding,
    title={Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks},
    author={Chen Ma and Xiangyu Guo and Li Chen and Jun-Hai Yong and Yisen Wang},
    booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
    year={2021},
    url={https://openreview.net/forum?id=g0wang64Zjd}
}

Structure of Folders and Files

+-- configures
|   |-- HSJA.json  # the hyperparameters setting of HSJA, which is also used in Tangent Attack
+-- dataset
|   |-- dataset_loader_maker.py  # it returns the data loader class that includes 1000 attacks images for the experiments.
|   |-- npz_dataset.py  # it is the dataset class that includes 1000 attacks images for the experiments.
+-- models
|   |-- defensive_model.py # the wrapper of defensive networks (e.g., AT, ComDefend, Feature Scatter), and it converts the input image's pixels to the range of 0 to 1 before feeding.
|   |-- standard_model.py # the wrapper of standard classification networks, and it converts the input image's pixels to the range of 0 to 1 before feeding.
+-- tangent_attack_hemisphere
|   |-- attack.py  # the main class for the attack.
|   |-- tangent_point_analytical_solution.py  # the class for computing the optimal tagent point of the hemisphere.
+-- tangent_attack_semiellipsoid
|   |-- attack.py  # the main class for the attack.
|   |-- tangent_point_analytical_solution.py  # the class for computing the optimal tagent point of the semi-ellipsoid.
+-- cifar_models   # this folder includes the target models of CIFAR-10, i.e., PyramidNet-272, GDAS, WRN-28, and WRN-40 networks.
|-- config.py   # the main configuration of Tangent Attack.
|-- logs  # all the output (logs and result stats files) are located inside this folder
|-- train_pytorch_model  # the pretrained weights of target models
|-- attacked_images  # the 1000 image data for evaluation 

In general, the train_pytorch_model includes the pretrained models' weights, and attacked_images includes the image data, which is packaged into .npz format with pixel range of [0-1].

In the attack, all logs are dumped to logs folder, the statistical results are also written into logs folder, which are .json format.

Attack Command

The following command could run Tangent Attack (TA) and Generalized Tangent Attack (G-TA) on the CIFAR-10 dataset under the untargetd attack's setting:

python tangent_attack_hemisphere/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch resnet-50
python tangent_attack_hemisphere/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch gdas
python tangent_attack_semiellipsoid/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch resnet-50
python tangent_attack_semiellipsoid/attack.py --gpu 0 --norm l2 --dataset CIFAR-10 --arch gdas

Once the attack is running, it directly writes the log into a newly created logs folder. After attacking, the statistical result are also dumped into the same folder, which is named as *.json file.

Also, you can use the following bash shell to run the attack of different models one by one.

./tangent_attack_CIFAR_undefended_models.sh

The commmand of attacks of defense models are presented in tangent_attack_CIFAR_defense_models.sh.

  • The gpu device could be specified by the --gpu device_id argument.
  • the targeted attack can be specified by the --targeted argument. If you want to perform untargeted attack, just don't pass it.
  • the attack of defense models uses --attack_defense --defense_model adv_train/jpeg/com_defend/TRADES argument.

Requirement

Our code is tested on the following environment (probably also works on other environments without many changes):

  • Ubuntu 18.04
  • Python 3.7.3
  • CUDA 11.1
  • CUDNN 8.0.4
  • PyTorch 1.7.1
  • torchvision 0.8.2
  • numpy 1.18.0
  • pretrainedmodels 0.7.4
  • bidict 0.18.0
  • advertorch 0.1.5
  • glog 0.3.1

You can just type pip install -r requirements.txt to install packages.

Download Files of Running Results and Logs

I have uploaded all the logs and results with the compressed zip file format onto this google drive link so that you can download them.

Owner
machen
machen
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation

f-BRS: Rethinking Backpropagating Refinement for Interactive Segmentation [Paper] [PyTorch] [MXNet] [Video] This repository provides code for training

Visual Understanding Lab @ Samsung AI Center Moscow 516 Dec 21, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting

N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting Recent progress in neural forecasting instigated significant improvements in the

Cristian Challu 82 Jan 04, 2023
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023