TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Overview

Tensorflow- MaskRCNN Steps

git clone https://github.com/amalaj7/TFOD-MASKRCNN.git
1.  conda create -n tfod python=3.6   
2.  conda activate tfod  
3.  pip install pillow lxml Cython contextlib2 jupyter matplotlib pandas opencv-python tensorflow==1.15.0 (for GPU- tensorflow-gpu)
4.  conda install -c anaconda protobuf   
5.  go to project path 'models/research'
6.  protoc object_detection/protos/*.proto --python_out=.  
7.  python setup.py install

Install COCO API

8) pip3 install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"

Resize images in a folder

9) python resize_images.py -d train_images/ -s 800 600

Put images and annotations in corresponding folders inside images/ (Annotations are in COCO format)

10)  python create_coco_tf_record.py --logtostderr --train_image_dir=images/train_images --test_image_dir=images/test_images --train_annotations_file=coco_annotations/train.json --test_annotations_file=coco_annotations/test.json --include_masks=True --output_dir=./
  • copy nets and deployment folder and export_inference_graph.py from slim folder and paste it in research folder

Training

  • Create a folder called "training" , inside training folder download your custom model from Model Zoo TF1 | Model Zoo TF2 , extract it and create a labelmap.pbtxt file(sample file is given in training folder) that contains the class labels
  • Alterations in the config file , copy the config file from object_detection/samples/config and paste it in training folder or else u can use the pipeline.config that comes while downloading the pretrained model
  • Edit line no 10 - Number of classes
  • Edit line no 128 - Path to model.ckpt file (downloaded model's file)
  • Edit line no 134 - Iteration
  • Edit line no 143 - path-to-train.record
  • Edit line no 145 and 161 - path-to-labelmap
  • Edit line no 159 - path to test.record

Train model

python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/mask_rcnn_resnet50_atrous_coco.config

Export Tensorflow Graph

python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/mask_rcnn_resnet50_atrous_coco.config --trained_checkpoint_prefix training/model.ckpt-10000 --output_directory my_model_mask

Inference

  • Open object_detection_tutorial.ipynb and replace the necessary fields like model path, config path and test image path

Result

Segmented Result

View tensorboard

tensorboard --logdir=training

Tensorflow2 - MASKRCNN Steps

  • Almost similar steps as above .
git clone https://github.com/tensorflow/models.git
cd models/research
# Compile protos.
protoc object_detection/protos/*.proto --python_out=.
# Install TensorFlow Object Detection API.
cp object_detection/packages/tf2/setup.py .
python -m pip install .

To test the installation

python object_detection/builders/model_builder_tf2_test.py
  • Then follow the above steps from 8 to 10 (includes downloading the pretrained model and editing the config file according to your needs)

Train the model

python model_main_tf2.py --pipeline_config_path=training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config --model_dir=training --alsologtostderr

View tensorboard

tensorboard --logdir=training

Export Tensorflow Graph

python exporter_main_v2.py \
    --trained_checkpoint_dir training/model_checkpoint \
    --output_directory final_model \
    --pipeline_config_path training/mask_rcnn_inception_resnet_v2_1024x1024_coco17_gpu-8.config

Inference

  • For TFOD2 , you can utilize inference_from_saved_model_tf2_colab.ipynb and replace the necessary fields like model path, config path and test image path
Owner
Amal Ajay
Goals Matter, But so is the Journey and the Climb.
Amal Ajay
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023