Improved Fitness Optimization Landscapes for Sequence Design

Overview

ReLSO

Improved Fitness Optimization Landscapes for Sequence Design

Description


In recent years, deep learning approaches for determining protein sequence-fitness relationships have gained traction. Advances in high-throughput mutagenesis, directed evolution, and next-generation sequencing have allowed for the accumulation of large amounts of labelled fitness data and consequently, attracted the application of various deep learning methods. Although these methods learn an implicit fitness landscape, there is little work on using the latent encoding directly for protein sequence optimization. Here we show that this latent space representation of a fitness landscape can be made very amenable to latent space optimization through a joint-training process. We also show that this encoding strategy which also provides improvements to generalization over more traditional training strategies. We apply our approach to several biological contexts and show that latent space optimization in a smooth learned folding landscape allows for more accurate and efficient optimization of protein sequences.

Citation

This repo accompanies the following publication:

Egbert Castro, Abhinav Godavarthi, Julien Rubinfien, Smita Krishnaswamy. Guided Generative Protein Design using Regularized Transformers. Nature Machine Intelligence, in review (2021).

How to run


First, install dependencies

# clone project   
git clone https://github.com/KrishnaswamyLab/ReLSO-Guided-Generative-Protein-Design-using-Regularized-Transformers.git


# install project   
cd ReLSO-Guided-Generative-Protein-Design-using-Regularized-Transformers 
pip install -e .   
pip install -r requirements.txt

Usage

Training models

# run training script
python train_relso.py  --data gifford

*note: if arg option is not relevant to current model selection, it will not be used. See init method of each model to see what's used.

available dataset args:

    gifford, GB1_WU, GFP, TAPE

available auxnetwork args:

    base_reg

Original data sources

You might also like...
An implementation of a sequence to sequence neural network using an encoder-decoder
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Sequence lineage information extracted from RKI sequence data repo
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

Aircraft design optimization made fast through modern automatic differentiation
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Racing line optimization algorithm in python that uses Particle Swarm Optimization.
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Puzzle-CAM: Improved localization via matching partial and full features.
Puzzle-CAM: Improved localization via matching partial and full features.

Puzzle-CAM The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)
[ECCVW2020] Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DiMP)

Feel free to visit my homepage Robust Long-Term Object Tracking via Improved Discriminative Model Prediction (RLT-DIMP) [ECCVW2020 paper] Presentation

Comments
  • Conda env create not working

    Conda env create not working

    When I type in the command as instructed in how to run, I get this error:

    Warning: you have pip-installed dependencies in your environment file, but you do not list pip itself as one of your conda dependencies. Conda may not use the correct pip to install your packages, and they may end up in the wrong place. Please add an explicit pip dependency. I'm adding one for you, but still nagging you. Collecting package metadata (repodata.json): done Solving environment: failed

    ResolvePackageNotFound:

    • libcxx==12.0.0=h2f01273_0
    • python==3.10.4=hdfd78df_0
    • openssl==1.1.1q=hca72f7f_0
    • ncurses==6.3=hca72f7f_3
    • readline==8.1.2=hca72f7f_1
    • bzip2==1.0.8=h1de35cc_0
    • ca-certificates==2022.07.19=hecd8cb5_0
    • xz==5.2.5=hca72f7f_1
    • libffi==3.3=hb1e8313_2
    • zlib==1.2.12=h4dc903c_2
    • sqlite==3.38.5=h707629a_0
    • tk==8.6.12=h5d9f67b_0
    opened by Pixelatory 1
  • May the internal information of gifford data leads to a bias results given by model?

    May the internal information of gifford data leads to a bias results given by model?

    I'm very intersted in your work and analysize the gifford data. Firstly, I use the CD-HIT( a Cluster tool) split into different clusters.Then, I chose the sequence (comes the Clsuter-1(a cluster subset contaiing similar sequences given by CD-HIT)) with highest enrich value as a baseline, and focus on the residue difference between it and others sequences. Very interstingly, i find those sequences that containg 2 or 3 different residues compared to baseline sequence, usually have high enrichments. In Top-100 high enrichments, it can at 65%. As i know, your work is a multitask that both focus on generation and prediction. **I wonder that whether the JT-VAE tends to produce the new sequences that different from the corresponding baseline sequence with highest enrichment about 2 or 3 different residues , and the prediction neural network may think such sequences are good results.**It means that the model only need to realize the fact that compared to high enrich sequnces,the new sequnces contain 2 or 3 different residues is good enough. Beacuse i not find your results, i hope you can give me some advices.

    opened by chengyunzhang 0
Releases(v1.0)
Owner
Krishnaswamy Lab
Krishnaswamy Lab
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 02, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Official Pytorch Code for the paper TransWeather

TransWeather Official Code for the paper TransWeather, Arxiv Tech Report 2021 Paper | Website About this repo: This repo hosts the implentation code,

Jeya Maria Jose 81 Dec 30, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks.

The Lottery Ticket Hypothesis for Pre-trained BERT Networks Code for this paper The Lottery Ticket Hypothesis for Pre-trained BERT Networks. [NeurIPS

VITA 122 Dec 14, 2022
Lite-HRNet: A Lightweight High-Resolution Network

LiteHRNet Benchmark 🔥 🔥 Based on MMsegmentation 🔥 🔥 Cityscapes FCN resize concat config mIoU last mAcc last eval last mIoU best mAcc best eval bes

16 Dec 12, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021