MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

Related tags

Deep Learningmdetr
Overview

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

WebsiteColabPaper

This repository contains code and links to pre-trained models for MDETR (Modulated DETR) for pre-training on data having aligned text and images with box annotations, as well as fine-tuning on tasks requiring fine grained understanding of image and text.

We show big gains on the phrase grounding task (Flickr30k), Referring Expression Comprehension (RefCOCO, RefCOCO+ and RefCOCOg) as well as Referring Expression Segmentation (PhraseCut, CLEVR Ref+). We also achieve competitive performance on visual question answering (GQA, CLEVR).

MDETR

TL;DR. We depart from the fixed frozen object detector approach of several popular vision + language pre-trained models and achieve true end-to-end multi-modal understanding by training our detector in the loop. In addition, we only detect objects that are relevant to the given text query, where the class labels for the objects are just the relevant words in the text query. This allows us to expand our vocabulary to anything found in free form text, making it possible to detect and reason over novel combination of object classes and attributes.

For details, please see the paper: MDETR - Modulated Detection for End-to-End Multi-Modal Understanding by Aishwarya Kamath, Mannat Singh, Yann LeCun, Ishan Misra, Gabriel Synnaeve and Nicolas Carion.

Aishwarya Kamath and Nicolas Carion made equal contributions to this codebase.

Usage

The requirements file has all the dependencies that are needed by MDETR.

We provide instructions how to install dependencies via conda. First, clone the repository locally:

git clone https://github.com/ashkamath/mdetr.git

Make a new conda env and activate it:

conda create -n mdetr_env python=3.8
conda activate mdetr_env

Install the the packages in the requirements.txt:

pip install -r requirements.txt

Multinode training

Distributed training is available via Slurm and submitit:

pip install submitit

Pre-training

The links to data, steps for data preparation and script for running finetuning can be found in Pretraining Instructions We also provide the pre-trained model weights for MDETR trained on our combined aligned dataset of 1.3 million images paired with text.

The models are summarized in the following table. Note that the performance reported is "raw", without any fine-tuning. For each dataset, we report the class-agnostic box [email protected], which measures how well the model finds the boxes mentioned in the text. All performances are reported on the respective validation sets of each dataset.

Backbone GQA Flickr Refcoco Url
Size
AP AP [email protected] AP Refcoco [email protected] Refcoco+ [email protected] Refcocog [email protected]
1 R101 58.9 75.6 82.5 60.3 72.1 58.0 55.7 model 3GB
2 ENB3 59.5 76.6 82.9 57.6 70.2 56.7 53.8 model 2.4GB
3 ENB5 59.9 76.4 83.7 61.8 73.4 58.8 57.1 model 2.7GB

Downstream tasks

Phrase grounding on Flickr30k

Instructions for data preparation and script to run evaluation can be found at Flickr30k Instructions

AnyBox protocol

Backbone Pre-training Image Data Val [email protected] Val [email protected] Val [email protected] Test [email protected] Test [email protected] Test [email protected] url size
Resnet-101 COCO+VG+Flickr 82.5 92.9 94.9 83.4 93.5 95.3 model 3GB
EfficientNet-B3 COCO+VG+Flickr 82.9 93.2 95.2 84.0 93.8 95.6 model 2.4GB
EfficientNet-B5 COCO+VG+Flickr 83.6 93.4 95.1 84.3 93.9 95.8 model 2.7GB

MergedBox protocol

Backbone Pre-training Image Data Val [email protected] Val [email protected] Val [email protected] Test [email protected] Test [email protected] Test [email protected] url size
Resnet-101 COCO+VG+Flickr 82.3 91.8 93.7 83.8 92.7 94.4 model 3GB

Referring expression comprehension on RefCOCO, RefCOCO+, RefCOCOg

Instructions for data preparation and script to run finetuning and evaluation can be found at Referring Expression Instructions

RefCOCO

Backbone Pre-training Image Data Val TestA TestB url size
Resnet-101 COCO+VG+Flickr 86.75 89.58 81.41 model 3GB
EfficientNet-B3 COCO+VG+Flickr 87.51 90.40 82.67 model 2.4GB

RefCOCO+

Backbone Pre-training Image Data Val TestA TestB url size
Resnet-101 COCO+VG+Flickr 79.52 84.09 70.62 model 3GB
EfficientNet-B3 COCO+VG+Flickr 81.13 85.52 72.96 model 2.4GB

RefCOCOg

Backbone Pre-training Image Data Val Test url size
Resnet-101 COCO+VG+Flickr 81.64 80.89 model 3GB
EfficientNet-B3 COCO+VG+Flickr 83.35 83.31 model 2.4GB

Referring expression segmentation on PhraseCut

Instructions for data preparation and script to run finetuning and evaluation can be found at PhraseCut Instructions

Backbone M-IoU Precision @0.5 Precision @0.7 Precision @0.9 url size
Resnet-101 53.1 56.1 38.9 11.9 model 1.5GB
EfficientNet-B3 53.7 57.5 39.9 11.9 model 1.2GB

Visual question answering on GQA

Instructions for data preparation and scripts to run finetuning and evaluation can be found at GQA Instructions

Backbone Test-dev Test-std url size
Resnet-101 62.48 61.99 model 3GB
EfficientNet-B5 62.95 62.45 model 2.7GB

Long-tailed few-shot object detection

Instructions for data preparation and scripts to run finetuning and evaluation can be found at LVIS Instructions

Data AP AP 50 AP r APc AP f url size
1% 16.7 25.8 11.2 14.6 19.5 model 3GB
10% 24.2 38.0 20.9 24.9 24.3 model 3GB
100% 22.5 35.2 7.4 22.7 25.0 model 3GB

Synthetic datasets

Instructions to reproduce our results on CLEVR-based datasets are available at CLEVR instructions

Overall Accuracy Count Exist
Compare Number Query Attribute Compare Attribute Url Size
99.7 99.3 99.9 99.4 99.9 99.9 model 446MB

License

MDETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citation

If you find this repository useful please give it a star and cite as follows! :) :

    @article{kamath2021mdetr,
      title={MDETR--Modulated Detection for End-to-End Multi-Modal Understanding},
      author={Kamath, Aishwarya and Singh, Mannat and LeCun, Yann and Misra, Ishan and Synnaeve, Gabriel and Carion, Nicolas},
      journal={arXiv preprint arXiv:2104.12763},
      year={2021}
    }
Owner
Aishwarya Kamath
Find me @ ashkamath.github.io
Aishwarya Kamath
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022