Aircraft design optimization made fast through modern automatic differentiation

Overview

AeroSandbox ✈️

by Peter Sharpe ( )

Downloads Monthly Downloads Build Status

Overview

AeroSandbox is a Python package for design optimization of engineered systems such as aircraft.

At its heart, AeroSandbox is an optimization suite that combines the ease-of-use of familiar NumPy syntax with the power of modern automatic differentiation.

This automatic differentiation dramatically improves optimization performance on large problems: design problems with tens of thousands of decision variables solve in seconds on a laptop.

AeroSandbox also comes with dozens of end-to-end-differentiable aerospace physics models, allowing you to simultaneously optimize an aircraft's aerodynamics, structures, propulsion, mission trajectory, stability, and more.

VLM Image VLM simulation of a glider, aileron deflections of +-30°. Runtime of 0.35 sec on a typical laptop (i7-8750H).

PANEL Image Panel simulation of a wing (extruded NACA2412, α=15°, AR=4). Note the strong three-dimensionality of the flow near the tip.

Getting Started

Installation

Use pip install aerosandbox[full] for a complete install.

For a lightweight installation with minimal dependencies, use pip install aerosandbox. All optimization, numerics, and physics models are included this headless install, but some visualization dependencies are not installed.

Tutorials, Examples, and Documentation

To get started, check out the tutorials folder here! All tutorials are viewable in-browser, or you can open them as Jupyter notebooks by cloning this repository.

For a more detailed and theory-heavy introduction to AeroSandbox, please see this thesis.

For a yet-more-detailed developer-level description of AeroSandbox modules, please see the developer README.

You can print documentation and examples for any AeroSandbox object by using the built-in help() function (e.g., help(asb.Airplane)). AeroSandbox code is also documented extensively in the source and contains hundreds of unit test examples, so examining the source code can also be useful.

Usage Details

One final point to note: as we're all sensible and civilized here, all inputs and outputs to AeroSandbox are expressed in base SI units, or derived units thereof (e.g, m, N, kg, m/s, J, Pa).

The only exception to this rule is when units are explicitly noted via variable name suffix. For example:

  • battery_capacity -> Joules
  • battery_capacity_watt_hours -> Watt-hours.

All angles are in radians, except for α and β which are in degrees due to long-standing aerospace convention. (In any case, units are marked on all function docstrings.)

If you wish to use other units, consider using aerosandbox.tools.units to convert easily.

Project Details

Contributing

Please feel free to join the development of AeroSandbox - contributions are always so welcome! If you have a change you'd like to make, the easiest way to do that is by submitting a pull request.

The text file CONTRIBUTING.md has more details for developers and power users.

If you've already made several additions and would like to be involved in a more long-term capacity, please message me! Contact information can be found next to my name near the top of this README.

Donating

If you like this software, please consider donating to support development via PayPal or GitHub Sponsors! I'm a grad student, so every dollar that you donate helps wean me off my diet of instant coffee and microwaved ramen noodles.

Bugs

Please, please report all bugs by creating a new issue at https://github.com/peterdsharpe/AeroSandbox/issues!

Versioning

AeroSandbox loosely uses semantic versioning, which should give you an idea of whether or not you can probably expect backward-compatibility and/or new features from any given update. However, the code is a work in progress and things change rapidly - for the time being, please freeze your version of AeroSandbox for any serious deployments. Commercial users: I'm more than happy to discuss consulting work for active AeroSandbox support if this package proves helpful!

Citation

If you find AeroSandbox useful in a research publication, please cite it using the following BibTeX snippet:

@mastersthesis{aerosandbox,
    title = {AeroSandbox: A Differentiable Framework for Aircraft Design Optimization},
    author = {Sharpe, Peter D.},
    school = {Massachusetts Institute of Technology},
    year = {2021}
}

License

MIT License, full terms here.

Stargazers over time

Stargazers over time

Owner
Peter Sharpe
MIT AeroAstro PhD Candidate | Engineering design optimization, aircraft design, and aerodynamics. Hello and welcome to my GitHub! :)
Peter Sharpe
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will make a program to Crack Any Password Using Python. Show some ❤️ by starring this repository!

Crack Any Password Using Python We will see a basic program that is basically a hint to brute force attack to crack passwords. In other words, we will

Ananya Chatterjee 11 Dec 03, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Pixel Consensus Voting for Panoptic Segmentation (CVPR 2020)

Implementation for Pixel Consensus Voting (CVPR 2020). This codebase contains the essential ingredients of PCV, including various spatial discretizati

Haochen 23 Oct 25, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021