Optimized code based on M2 for faster image captioning training

Overview

Transformer Captioning

This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimize the code for FASTER training without any accuracy decline.

Specifically, we optimize following aspects:

  • vocab: we pre-tokenize the dataset so there are no ' '(space token) in vocab or generated sentences.
  • Dataloader: we optimize speed of dataloader and achieve 2x~6x speed-up.
  • BeamSearch:
    • Make ops parallel in beam_search.py (e.g. loop gather -> parallel gather)
    • Use cheaper ops (e.g. torch.sort -> torch.topk)
    • Use faster and specialized functions instead of general ones
  • Self-critical Training
    • Compute Cider by index instead of raw text
    • Cache tf-idf vector of gts instead of computing it again and again
    • drop on-the-fly tokenization since it is too SLOW.
  • contiguous model parameter
  • other details...

speed-up result (1 GeForce 1080Ti GPU, num_workers=8, batch_size=50(XE)/100(SCST))

Training its/s Original Optimized Accelerate
XE 7.5 10.3 138%
SCST 0.6 1.3 204%
Dataloader its/s Original XE Optimized XE Accelerate Original SCST Optimized SCST Accelerate
batch size=50 12.5 52.5 320% 29.3 90.7 209%
batch size=100 5.5 33.5 510% 22.3 88.5 297%
batch size=150 3.7 25.4 580% 13.4 71.8 435%
batch size=200 2.7 20.1 650% 11.4 54.1 376%

Things I have tried but not useful

  • TorchText n-gram counter: slower than the original one.
  • nn.Module.MultiHeadAttention: slightly faster than original one.
  • GPU cider: very slow
  • BeamableMM: slower than the original

Environment setup

Clone the repository and create the m2release conda environment using the environment.yml file:

conda env create -f environment.yml
conda activate m2release

Then download spacy data by executing the following command:

python -m spacy download en

Note: Python 3.6 is required to run our code.

Data preparation

To run the code, annotations and detection features for the COCO dataset are needed. Please download the annotations file annotations.zip and extract it.

Detection features are computed with the code provided by [1]. To reproduce our result, please download the COCO features file coco_detections.hdf5 (~53.5 GB), in which detections of each image are stored under the <image_id>_features key. <image_id> is the id of each COCO image, without leading zeros (e.g. the <image_id> for COCO_val2014_000000037209.jpg is 37209), and each value should be a (N, 2048) tensor, where N is the number of detections.

REMEMBER to do pre-tokenize

python pre_tokenize.py

Evaluation

Run python test.py using the following arguments:

Argument Possible values
--batch_size Batch size (default: 10)
--workers Number of workers (default: 0)
--features_path Path to detection features file
--annotation_folder Path to folder with COCO annotations

Training procedure

Run python train.py using the following arguments:

Argument Possible values
--exp_name Experiment name
--batch_size Batch size (default: 10)
--workers Number of workers (default: 0)
--head Number of heads (default: 8)
--resume_last If used, the training will be resumed from the last checkpoint.
--resume_best If used, the training will be resumed from the best checkpoint.
--features_path Path to detection features file
--annotation_folder Path to folder with COCO annotations
--logs_folder Path folder for tensorboard logs (default: "tensorboard_logs")

For example, to train our model with the parameters used in our experiments, use

We recommend to use batch size=100 during SCST stage. Since it will accelerate convergence without obvious accuracy decline

python train.py --exp_name test --batch_size 50 --head 8 --features_path ~/datassd/coco_detections.hdf5 --annotation_folder annotation --workers 8 --rl_batch_size 100 --image_field FasterImageDetectionsField --model transformer --seed 118

References

Owner
lyricpoem
lyricpoem
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022