Automatic differentiation with weighted finite-state transducers.

Related tags

Deep Learninggtn
Overview
logo

GTN: Automatic Differentiation with WFSTs

Quickstart | Installation | Documentation

facebookresearch Documentation Status

What is GTN?

GTN is a framework for automatic differentiation with weighted finite-state transducers. The framework is written in C++ and has bindings to Python.

The goal of GTN is to make adding and experimenting with structure in learning algorithms much simpler. This structure is encoded as weighted automata, either acceptors (WFSAs) or transducers (WFSTs). With gtn you can dynamically construct complex graphs from operations on simpler graphs. Automatic differentiation gives gradients with respect to any input or intermediate graph with a single call to gtn.backward.

Also checkout the repository gtn_applications which consists of GTN applications to Handwriting Recognition (HWR), Automatic Speech Recognition (ASR) etc.

Quickstart

First install the python bindings.

The following is a minimal example of building two WFSAs with gtn, constructing a simple function on the graphs, and computing gradients. Open In Colab

import gtn

# Make some graphs:
g1 = gtn.Graph()
g1.add_node(True)  # Add a start node
g1.add_node()  # Add an internal node
g1.add_node(False, True)  # Add an accepting node

# Add arcs with (src node, dst node, label):
g1.add_arc(0, 1, 1)
g1.add_arc(0, 1, 2)
g1.add_arc(1, 2, 1)
g1.add_arc(1, 2, 0)

g2 = gtn.Graph()
g2.add_node(True, True)
g2.add_arc(0, 0, 1)
g2.add_arc(0, 0, 0)

# Compute a function of the graphs:
intersection = gtn.intersect(g1, g2)
score = gtn.forward_score(intersection)

# Visualize the intersected graph:
gtn.draw(intersection, "intersection.pdf")

# Backprop:
gtn.backward(score)

# Print gradients of arc weights 
print(g1.grad().weights_to_list()) # [1.0, 0.0, 1.0, 0.0]

Installation

Requirements

  • A C++ compiler with good C++14 support (e.g. g++ >= 5)
  • cmake >= 3.5.1, and make

Python

Install the Python bindings with

pip install gtn

Building C++ from source

First, clone the project:

git clone [email protected]:facebookresearch/gtn.git && cd gtn

Create a build directory and run CMake and make:

mkdir -p build && cd build
cmake ..
make -j $(nproc)

Run tests with:

make test

Run make install to install.

Python bindings from source

Setting up your environment:

conda create -n gtn_env
conda activate gtn_env

Required dependencies:

cd bindings/python
conda install setuptools

Use one of the following commands for installation:

python setup.py install

or, to install in editable mode (for dev):

python setup.py develop

Python binding tests can be run with make test, or with

python -m unittest discover bindings/python/test

Run a simple example:

python bindings/python/examples/simple_graph.py

Citing this Repository

If you use the code in this repository, please cite:

Awni Hannun, Vineel Pratap, Jacob Kahn and Wei-Ning Hsu. Differentiable Weighted Finite-State Transducers. arXiv 2010.01003, 2020.

@article{hannun2020dwfst,
  title={Differentiable Weighted Finite-State Transducers},
  author={Hannun, Awni and Pratap, Vineel and Kahn, Jacob and Hsu, Wei-Ning},
  journal={arXiv preprint arXiv:2010.01003},
  year={2020}
}

License

GTN is licensed under a MIT license. See LICENSE.

In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transformer"

FlatTN This repository contains code accompanying the paper "An End-to-End Chinese Text Normalization Model based on Rule-Guided Flat-Lattice Transfor

THUHCSI 74 Nov 28, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022