Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Overview

Universal Adversarial Triggers for Attacking and Analyzing NLP

This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for Attacking and Analyzing NLP. This repository contains the code for replicating our experiments and creating universal triggers.

Read our blog and our paper for more information on the method.

Dependencies

This code is written using PyTorch. The code for GPT-2 is based on HuggingFace's Transformer repo and the experiments on SQuAD, SNLI, and SST use AllenNLP. The code is flexible and should be generally applicable to most models (especially if its in AllenNLP), i.e., you can easily extend this code to work for the model or task you want.

The code is made to run on GPU, and a GPU is likely necessary due to the costs of running the larger models. I used one GTX 1080 for all the experiments; most experiments run in a few minutes. It is possible to run the SST and SNLI experiments without a GPU.

Installation

An easy way to install the code is to create a fresh anaconda environment:

conda create -n triggers python=3.6
source activate triggers
pip install -r requirements.txt

Now you should be ready to go!

Getting Started

The repository is broken down by task:

  • sst attacks sentiment analysis using the SST dataset (AllenNLP-based).
  • snli attacks natural language inference models on the SNLI dataset (AllenNLP-based).
  • squad attacks reading comprehension models using the SQuAD dataset (AllenNLP-based).
  • gpt2 attacks the GPT-2 language model using HuggingFace's model.

To get started, we recommend you start with snli or sst. In snli, we download pre-trained models (no training required) and create the triggers for the hypothesis sentence. In sst, we walk through training a simple LSTM sentiment analysis model in AllenNLP. It then creates universal adversarial triggers for that model. The code is well documented and walks you through the attack methodology.

The gradient-based attacks are written in attacks.py. The file utils.py contains the code for evaluating models, computing gradients, and evaluating the top candidates for the attack. utils.py is only used by the AllenNLP models (i.e., not for GPT-2).

References

Please consider citing our work if you found this code or our paper beneficial to your research.

@inproceedings{Wallace2019Triggers,
  Author = {Eric Wallace and Shi Feng and Nikhil Kandpal and Matt Gardner and Sameer Singh},
  Booktitle = {Empirical Methods in Natural Language Processing},                            
  Year = {2019},
  Title = {Universal Adversarial Triggers for Attacking and Analyzing {NLP}}
}    

Contributions and Contact

This code was developed by Eric Wallace, contact available at [email protected].

If you'd like to contribute code, feel free to open a pull request. If you find an issue with the code, please open an issue.

Owner
Eric Wallace
Ph.D. Student at Berkeley working on ML and NLP.
Eric Wallace
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
An Open-Source Toolkit for Prompt-Learning.

An Open-Source Framework for Prompt-learning. Overview • Installation • How To Use • Docs • Paper • Citation • What's New? Nov 2021: Now we have relea

THUNLP 2.3k Jan 07, 2023
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021