Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Overview

Universal Adversarial Triggers for Attacking and Analyzing NLP

This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for Attacking and Analyzing NLP. This repository contains the code for replicating our experiments and creating universal triggers.

Read our blog and our paper for more information on the method.

Dependencies

This code is written using PyTorch. The code for GPT-2 is based on HuggingFace's Transformer repo and the experiments on SQuAD, SNLI, and SST use AllenNLP. The code is flexible and should be generally applicable to most models (especially if its in AllenNLP), i.e., you can easily extend this code to work for the model or task you want.

The code is made to run on GPU, and a GPU is likely necessary due to the costs of running the larger models. I used one GTX 1080 for all the experiments; most experiments run in a few minutes. It is possible to run the SST and SNLI experiments without a GPU.

Installation

An easy way to install the code is to create a fresh anaconda environment:

conda create -n triggers python=3.6
source activate triggers
pip install -r requirements.txt

Now you should be ready to go!

Getting Started

The repository is broken down by task:

  • sst attacks sentiment analysis using the SST dataset (AllenNLP-based).
  • snli attacks natural language inference models on the SNLI dataset (AllenNLP-based).
  • squad attacks reading comprehension models using the SQuAD dataset (AllenNLP-based).
  • gpt2 attacks the GPT-2 language model using HuggingFace's model.

To get started, we recommend you start with snli or sst. In snli, we download pre-trained models (no training required) and create the triggers for the hypothesis sentence. In sst, we walk through training a simple LSTM sentiment analysis model in AllenNLP. It then creates universal adversarial triggers for that model. The code is well documented and walks you through the attack methodology.

The gradient-based attacks are written in attacks.py. The file utils.py contains the code for evaluating models, computing gradients, and evaluating the top candidates for the attack. utils.py is only used by the AllenNLP models (i.e., not for GPT-2).

References

Please consider citing our work if you found this code or our paper beneficial to your research.

@inproceedings{Wallace2019Triggers,
  Author = {Eric Wallace and Shi Feng and Nikhil Kandpal and Matt Gardner and Sameer Singh},
  Booktitle = {Empirical Methods in Natural Language Processing},                            
  Year = {2019},
  Title = {Universal Adversarial Triggers for Attacking and Analyzing {NLP}}
}    

Contributions and Contact

This code was developed by Eric Wallace, contact available at [email protected].

If you'd like to contribute code, feel free to open a pull request. If you find an issue with the code, please open an issue.

Owner
Eric Wallace
Ph.D. Student at Berkeley working on ML and NLP.
Eric Wallace
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models

LMPBT Supplementary code for the Paper entitled ``Locally Most Powerful Bayesian Test for Out-of-Distribution Detection using Deep Generative Models"

1 Sep 29, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022