Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Overview

Universal Adversarial Triggers for Attacking and Analyzing NLP

This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for Attacking and Analyzing NLP. This repository contains the code for replicating our experiments and creating universal triggers.

Read our blog and our paper for more information on the method.

Dependencies

This code is written using PyTorch. The code for GPT-2 is based on HuggingFace's Transformer repo and the experiments on SQuAD, SNLI, and SST use AllenNLP. The code is flexible and should be generally applicable to most models (especially if its in AllenNLP), i.e., you can easily extend this code to work for the model or task you want.

The code is made to run on GPU, and a GPU is likely necessary due to the costs of running the larger models. I used one GTX 1080 for all the experiments; most experiments run in a few minutes. It is possible to run the SST and SNLI experiments without a GPU.

Installation

An easy way to install the code is to create a fresh anaconda environment:

conda create -n triggers python=3.6
source activate triggers
pip install -r requirements.txt

Now you should be ready to go!

Getting Started

The repository is broken down by task:

  • sst attacks sentiment analysis using the SST dataset (AllenNLP-based).
  • snli attacks natural language inference models on the SNLI dataset (AllenNLP-based).
  • squad attacks reading comprehension models using the SQuAD dataset (AllenNLP-based).
  • gpt2 attacks the GPT-2 language model using HuggingFace's model.

To get started, we recommend you start with snli or sst. In snli, we download pre-trained models (no training required) and create the triggers for the hypothesis sentence. In sst, we walk through training a simple LSTM sentiment analysis model in AllenNLP. It then creates universal adversarial triggers for that model. The code is well documented and walks you through the attack methodology.

The gradient-based attacks are written in attacks.py. The file utils.py contains the code for evaluating models, computing gradients, and evaluating the top candidates for the attack. utils.py is only used by the AllenNLP models (i.e., not for GPT-2).

References

Please consider citing our work if you found this code or our paper beneficial to your research.

@inproceedings{Wallace2019Triggers,
  Author = {Eric Wallace and Shi Feng and Nikhil Kandpal and Matt Gardner and Sameer Singh},
  Booktitle = {Empirical Methods in Natural Language Processing},                            
  Year = {2019},
  Title = {Universal Adversarial Triggers for Attacking and Analyzing {NLP}}
}    

Contributions and Contact

This code was developed by Eric Wallace, contact available at [email protected].

If you'd like to contribute code, feel free to open a pull request. If you find an issue with the code, please open an issue.

Owner
Eric Wallace
Ph.D. Student at Berkeley working on ML and NLP.
Eric Wallace
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Where2Act: From Pixels to Actions for Articulated 3D Objects

Where2Act: From Pixels to Actions for Articulated 3D Objects The Proposed Where2Act Task. Given as input an articulated 3D object, we learn to propose

Kaichun Mo 69 Nov 28, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022