Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Overview

Universal Adversarial Triggers for Attacking and Analyzing NLP

This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for Attacking and Analyzing NLP. This repository contains the code for replicating our experiments and creating universal triggers.

Read our blog and our paper for more information on the method.

Dependencies

This code is written using PyTorch. The code for GPT-2 is based on HuggingFace's Transformer repo and the experiments on SQuAD, SNLI, and SST use AllenNLP. The code is flexible and should be generally applicable to most models (especially if its in AllenNLP), i.e., you can easily extend this code to work for the model or task you want.

The code is made to run on GPU, and a GPU is likely necessary due to the costs of running the larger models. I used one GTX 1080 for all the experiments; most experiments run in a few minutes. It is possible to run the SST and SNLI experiments without a GPU.

Installation

An easy way to install the code is to create a fresh anaconda environment:

conda create -n triggers python=3.6
source activate triggers
pip install -r requirements.txt

Now you should be ready to go!

Getting Started

The repository is broken down by task:

  • sst attacks sentiment analysis using the SST dataset (AllenNLP-based).
  • snli attacks natural language inference models on the SNLI dataset (AllenNLP-based).
  • squad attacks reading comprehension models using the SQuAD dataset (AllenNLP-based).
  • gpt2 attacks the GPT-2 language model using HuggingFace's model.

To get started, we recommend you start with snli or sst. In snli, we download pre-trained models (no training required) and create the triggers for the hypothesis sentence. In sst, we walk through training a simple LSTM sentiment analysis model in AllenNLP. It then creates universal adversarial triggers for that model. The code is well documented and walks you through the attack methodology.

The gradient-based attacks are written in attacks.py. The file utils.py contains the code for evaluating models, computing gradients, and evaluating the top candidates for the attack. utils.py is only used by the AllenNLP models (i.e., not for GPT-2).

References

Please consider citing our work if you found this code or our paper beneficial to your research.

@inproceedings{Wallace2019Triggers,
  Author = {Eric Wallace and Shi Feng and Nikhil Kandpal and Matt Gardner and Sameer Singh},
  Booktitle = {Empirical Methods in Natural Language Processing},                            
  Year = {2019},
  Title = {Universal Adversarial Triggers for Attacking and Analyzing {NLP}}
}    

Contributions and Contact

This code was developed by Eric Wallace, contact available at [email protected].

If you'd like to contribute code, feel free to open a pull request. If you find an issue with the code, please open an issue.

Owner
Eric Wallace
Ph.D. Student at Berkeley working on ML and NLP.
Eric Wallace
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
Informal Persian Universal Dependency Treebank

Informal Persian Universal Dependency Treebank (iPerUDT) Informal Persian Universal Dependency Treebank, consisting of 3000 sentences and 54,904 token

Roya Kabiri 0 Jan 05, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022