TyXe: Pyro-based BNNs for Pytorch users

Related tags

Deep LearningTyXe
Overview

TyXe: Pyro-based BNNs for Pytorch users

TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveraging the model definition and inference capabilities of Pyro. Our core design principle is to cleanly separate the construction of neural architecture, prior, inference distribution and likelihood, enabling a flexible workflow where each component can be exchanged independently. Defining a BNN in TyXe takes as little as 5 lines of code:

net = nn.Sequential(nn.Linear(1, 50), nn.Tanh(), nn.Linear(50, 1))
prior = tyxe.priors.IIDPrior(dist.Normal(0, 1))
likelihood = tyxe.likelihoods.HomoskedasticGaussian(scale=0.1)
inference = tyxe.guides.AutoNormal
bnn = tyxe.VariationalBNN(net, prior, likelihood, inference)

In the following, we assume that you (roughly) know what a BNN is mathematically.

Motivating example

Standard neural networks give us a single function that fits the data, but many different ones are typically plausible. With only a single fit, we don't know for what inputs the model is 'certain' (because there is training data nearby) and where it is uncertain.

ML Samples
Maximum likelihood fit Posterior samples

Implementing the former can be achieved easily in a few lines of Pytorch code, but training a BNN that gives a distribution over different fits is typically more complicated and is specifically what we aim to simplify.

Training

Constructing a BNN object has been shown in the example above. For fitting the posterior approximation, we provide a high-level .fit method similar to libraries such as scikit-learn or keras:

optim = pyro.optim.Adam({"lr": 1e-3})
bnn.fit(data_loader, optim, num_epochs)

Prediction & evaluation

Further we provide .predict and .evaluation methods, which make predictions based on multiple samples from the approximate posterior, average them based on the observation model, and return log likelihoods and an error measure:

predictions = bnn.predict(x_test, num_samples)
error, log_likelihood = bnn.evaluate(x_test, y_test, num_samples)

Local reparameterization

We implement local reparameterization for factorized Gaussians as a poutine, which reduces gradient noise during training. This means it can be enabled or disabled at both during training and prediction with a context manager:

with tyxe.poutine.local_reparameterization():
    bnn.fit(data_loader, optim, num_epochs)
    bnn.predict(x_test, num_predictions)

At the moment, this poutine does not work with the AutoNormal and AutoDiagonalNormal guides in pyro, since those draw the weights from a Delta distribution, so you need to use tyxe.guides.ParameterwiseDiagonalNormal as your guide.

MCMC

We provide a unified interface to pyro's MCMC implementations, simply use the tyxe.MCMC_BNN class instead and provide a kernel instead of the guide:

kernel = pyro.infer.mcmcm.NUTS
bnn = tyxe.MCMC_BNN(net, prior, likelihood, kernel)

Any parameters that pyro's MCMC class accepts can be passed through the keyword arguments of the .fit method.

Continual learning

Due to our design that cleanly separates the prior from guide, architecture and likelihood, it is easy to update it in a continual setting. For example, you can construct a tyxe.priors.DictPrior by extracting the distributions over all weights and biases from a ParameterwiseDiagonalNormal instance using the get_detached_distributions method and pass it to bnn.update_prior to implement Variational Continual Learning in a few lines of code. See examples/vcl.py for a basic example on split-MNIST and split-CIFAR.

Network architectures

We don't implement any layer classes. You construct your network in Pytorch and then turn it into a BNN, which makes it easy to apply the same prior and inference strategies to different neural networks.

Inference

For inference, we mainly provide an equivalent to pyro's AutoDiagonalNormal that is compatible with local reparameterization in tyxe.guides. This module also contains a few helper functions for initialization of Gaussian mean parameters, e.g. to the values of a pre-trained network. It should be possible to use any of pyro's autoguides for variational inference. See examples/resnet.py for a few options as well as initializing to pre-trained weights.

Priors

The priors can be found in tyxe.priors. We currently only support placing priors on the parameters. Through the expose and hide arguments in the init method you can specify layers, types of layers and specific parameters over which you want to place a prior. This helps, for example in learning the parameters of BatchNorm layers deterministically.

Likelihoods

tyxe.observation_models contains classes that wrap the most common torch.distributions for specifying noise models of data to

Installation

We recommend installing TyXe using conda with the provided environment.yml, which also installs all the dependencies for the examples except for Pytorch3d, which needs to be added manually. The environment assumes that you are using CUDA11.0, if this is not the case, simply change the cudatoolkit and dgl-cuda versions before running:

conda env create -f environment.yml
conda activate tyxe
pip install -e .

Citation

If you use TyXe, please consider citing:

@article{ritter2021tyxe,
  author    = {Hippolyt Ritter and
               Theofanis Karaletsos
               },
  title     = {TyXe: Pyro-based Bayesian neural nets for Pytorch},
  journal   = {International Conference on Probabilistic Programming (ProbProg)},
  volume    = {},
  pages     = {},
  year      = {2020},
  url       = {https://arxiv.org/abs/2110.00276}
}
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
imbalanced-DL: Deep Imbalanced Learning in Python

imbalanced-DL: Deep Imbalanced Learning in Python Overview imbalanced-DL (imported as imbalanceddl) is a Python package designed to make deep imbalanc

NTUCSIE CLLab 19 Dec 28, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022