TyXe: Pyro-based BNNs for Pytorch users

Related tags

Deep LearningTyXe
Overview

TyXe: Pyro-based BNNs for Pytorch users

TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveraging the model definition and inference capabilities of Pyro. Our core design principle is to cleanly separate the construction of neural architecture, prior, inference distribution and likelihood, enabling a flexible workflow where each component can be exchanged independently. Defining a BNN in TyXe takes as little as 5 lines of code:

net = nn.Sequential(nn.Linear(1, 50), nn.Tanh(), nn.Linear(50, 1))
prior = tyxe.priors.IIDPrior(dist.Normal(0, 1))
likelihood = tyxe.likelihoods.HomoskedasticGaussian(scale=0.1)
inference = tyxe.guides.AutoNormal
bnn = tyxe.VariationalBNN(net, prior, likelihood, inference)

In the following, we assume that you (roughly) know what a BNN is mathematically.

Motivating example

Standard neural networks give us a single function that fits the data, but many different ones are typically plausible. With only a single fit, we don't know for what inputs the model is 'certain' (because there is training data nearby) and where it is uncertain.

ML Samples
Maximum likelihood fit Posterior samples

Implementing the former can be achieved easily in a few lines of Pytorch code, but training a BNN that gives a distribution over different fits is typically more complicated and is specifically what we aim to simplify.

Training

Constructing a BNN object has been shown in the example above. For fitting the posterior approximation, we provide a high-level .fit method similar to libraries such as scikit-learn or keras:

optim = pyro.optim.Adam({"lr": 1e-3})
bnn.fit(data_loader, optim, num_epochs)

Prediction & evaluation

Further we provide .predict and .evaluation methods, which make predictions based on multiple samples from the approximate posterior, average them based on the observation model, and return log likelihoods and an error measure:

predictions = bnn.predict(x_test, num_samples)
error, log_likelihood = bnn.evaluate(x_test, y_test, num_samples)

Local reparameterization

We implement local reparameterization for factorized Gaussians as a poutine, which reduces gradient noise during training. This means it can be enabled or disabled at both during training and prediction with a context manager:

with tyxe.poutine.local_reparameterization():
    bnn.fit(data_loader, optim, num_epochs)
    bnn.predict(x_test, num_predictions)

At the moment, this poutine does not work with the AutoNormal and AutoDiagonalNormal guides in pyro, since those draw the weights from a Delta distribution, so you need to use tyxe.guides.ParameterwiseDiagonalNormal as your guide.

MCMC

We provide a unified interface to pyro's MCMC implementations, simply use the tyxe.MCMC_BNN class instead and provide a kernel instead of the guide:

kernel = pyro.infer.mcmcm.NUTS
bnn = tyxe.MCMC_BNN(net, prior, likelihood, kernel)

Any parameters that pyro's MCMC class accepts can be passed through the keyword arguments of the .fit method.

Continual learning

Due to our design that cleanly separates the prior from guide, architecture and likelihood, it is easy to update it in a continual setting. For example, you can construct a tyxe.priors.DictPrior by extracting the distributions over all weights and biases from a ParameterwiseDiagonalNormal instance using the get_detached_distributions method and pass it to bnn.update_prior to implement Variational Continual Learning in a few lines of code. See examples/vcl.py for a basic example on split-MNIST and split-CIFAR.

Network architectures

We don't implement any layer classes. You construct your network in Pytorch and then turn it into a BNN, which makes it easy to apply the same prior and inference strategies to different neural networks.

Inference

For inference, we mainly provide an equivalent to pyro's AutoDiagonalNormal that is compatible with local reparameterization in tyxe.guides. This module also contains a few helper functions for initialization of Gaussian mean parameters, e.g. to the values of a pre-trained network. It should be possible to use any of pyro's autoguides for variational inference. See examples/resnet.py for a few options as well as initializing to pre-trained weights.

Priors

The priors can be found in tyxe.priors. We currently only support placing priors on the parameters. Through the expose and hide arguments in the init method you can specify layers, types of layers and specific parameters over which you want to place a prior. This helps, for example in learning the parameters of BatchNorm layers deterministically.

Likelihoods

tyxe.observation_models contains classes that wrap the most common torch.distributions for specifying noise models of data to

Installation

We recommend installing TyXe using conda with the provided environment.yml, which also installs all the dependencies for the examples except for Pytorch3d, which needs to be added manually. The environment assumes that you are using CUDA11.0, if this is not the case, simply change the cudatoolkit and dgl-cuda versions before running:

conda env create -f environment.yml
conda activate tyxe
pip install -e .

Citation

If you use TyXe, please consider citing:

@article{ritter2021tyxe,
  author    = {Hippolyt Ritter and
               Theofanis Karaletsos
               },
  title     = {TyXe: Pyro-based Bayesian neural nets for Pytorch},
  journal   = {International Conference on Probabilistic Programming (ProbProg)},
  volume    = {},
  pages     = {},
  year      = {2020},
  url       = {https://arxiv.org/abs/2110.00276}
}
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021