Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Overview

Diffusion Probabilistic Models

This repository provides a reference implementation of the method described in the paper:

Deep Unsupervised Learning using Nonequilibrium Thermodynamics
Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli
International Conference on Machine Learning, 2015
http://arxiv.org/abs/1503.03585

This implementation builds a generative model of data by training a Gaussian diffusion process to transform a noise distribution into a data distribution in a fixed number of time steps. The mean and covariance of the diffusion process are parameterized using deep supervised learning. The resulting model is tractable to train, easy to exactly sample from, allows the probability of datapoints to be cheaply evaluated, and allows straightforward computation of conditional and posterior distributions.

Using the Software

In order to train a diffusion probabilistic model on the default dataset of MNIST, install dependencies (see below), and then run python train.py.

Dependencies

  1. Install Blocks and its dependencies following these instructions
  2. Setup Fuel and download MNIST following these instructions.

As of October 16, 2015 this code requires the bleeding edge, rather than stable, versions of both Blocks and Fuel. (thanks to David Hofmann for pointing out that the stable release will not work due to an interface change)

Output

The objective function being minimized is the bound on the negative log likelihood in bits per pixel, minus the negative log likelihood under an identity-covariance Gaussian model. That is, it is the negative of the number in the rightmost column in Table 1 in the paper.

Logging information is printed to the console once per training epoch, including the current value of the objective on the training set.

Figures showing samples from the model, parameters, gradients, and training progress are also output periodically (every 25 epochs by default -- see train.py).

The samples from the model are of three types -- standard samples, samples inpainting the left half of masked images, and samples denoising images with Gaussian noise added (by default, the signal-to-noise ratio is 1). This demonstrates the straightforward way in which inpainting, denoising, and sampling from a posterior in general can be performed using this framework.

Here are samples generated by this code after 825 training epochs on MNIST, trained using the command run train.py:

Here are samples generated by this code after 1700 training epochs on CIFAR-10, trained using the command run train.py --batch-size 200 --dataset CIFAR10 --model-args "n_hidden_dense_lower=1000,n_hidden_dense_lower_output=5,n_hidden_conv=100,n_layers_conv=6,n_layers_dense_lower=6,n_layers_dense_upper=4,n_hidden_dense_upper=100":

Miscellaneous

Different nonlinearities - In the paper, we used softplus units in the convolutional layers, and tanh units in the dense layers. In this implementation, I use leaky ReLU units everywhere.

Original source code - This repository is a refactoring of the code used to run the experiments in the published paper. In the spirit of reproducibility, if you email me a request I am willing to share the original source code. It is poorly commented and held together with duct tape though. For most applications, you will be better off using the reference implementation provided here.

Contact - I would love to hear from you. Let me know what goes right/wrong! [email protected]

Owner
Jascha Sohl-Dickstein
Jascha Sohl-Dickstein
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
The codes reproduce the figures and statistics in the paper, "Controlling for multiple covariates," by Mark Tygert.

The accompanying codes reproduce all figures and statistics presented in "Controlling for multiple covariates" by Mark Tygert. This repository also pr

Meta Research 1 Dec 02, 2021
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Implementation of a Transformer using ReLA (Rectified Linear Attention)

ReLA (Rectified Linear Attention) Transformer Implementation of a Transformer using ReLA (Rectified Linear Attention). It will also contain an attempt

Phil Wang 49 Oct 14, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022