PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Overview

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

This repository contains the PyTorch implementation of the PanopticBEV model proposed in our RA-L 2021 paper Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images.

Our approach, PanopticBEV, is the state-of-the-art approach for generating panoptic segmentation maps in the bird's eye view using only monocular frontal view images.

PanopticBEV Teaser

If you find this code useful for your research, please consider citing our paper:

@article{gosala2021bev,
  title={Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images},
  author={Gosala, Nikhil and Valada, Abhinav},
  journal={arXiv preprint arXiv:2108.03227},
  year={2021}
}

Relevant links

System requirements

  • Linux (Tested on Ubuntu 18.04)
  • Python3 (Tested using Python 3.6.9)
  • PyTorch (Tested using PyTorch 1.8.1)
  • CUDA (Tested using CUDA 11.1)

Installation

a. Create a python virtual environment and activate it.

python3 -m venv panoptic_bev
source panoptic_bev/bin/activate

b. Update pip to the latest version.

python3 -m pip install --upgrade pip

c. Install the required python dependencies using the provided requirements.txt file.

pip3 install -r requirements.txt

d. Install the PanopticBEV code.

python3 setup.py develop

Obtaining the datasets

Please download the datasets from here and follow the instructions provided in the encapsulated readme file.

Code Execution

Configuration parameters

The configuration parameters of the model such as the learning rate, batch size, and dataloader options are stored in the experiments/config folder. If you intend to modify the model parameters, please do so here.

Training and Evaluation

The training and evaluation python codes along with the shell scripts to execute them are provided in the scripts folder. Before running the shell scripts, please fill in the missing parameters with your computer-specific data paths and parameters.

To train the model, execute the following command after replacing * with either kitti or nuscenes.

bash train_panoptic_bev_*.sh

To evaluate the model, execute the following command after replacing * with either kitti or nuscenes.

bash eval_panoptic_bev_*.sh 

Acknowledgements

This work was supported by the Federal Ministry of Education and Research (BMBF) of Germany under ISA 4.0 and by the Eva Mayr-Stihl Stiftung.

This project contains code adapted from other open-source projects. We especially thank the authors of:

License

This code is released under the GPLv3 for academic usage. For commercial usage, please contact Nikhil Gosala.

PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Semi-supervised Transfer Learning for Image Rain Removal. In CVPR 2019.

Semi-supervised Transfer Learning for Image Rain Removal This package contains the Python implementation of "Semi-supervised Transfer Learning for Ima

Wei Wei 59 Dec 26, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022

DG-TrajGen The official repository for paper ''Domain Generalization for Vision-based Driving Trajectory Generation'' submitted to ICRA 2022. Our Meth

Wang 25 Sep 26, 2022
Axel - 3D printed robotic hands and they controll with Raspberry Pi and Arduino combo

Axel It's our graduation project about 3D printed robotic hands and they control

0 Feb 14, 2022
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022