PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

Related tags

Deep Learningpiglet
Overview

piglet

PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like this paper, please cite us:

@inproceedings{zellers2021piglet,
    title={PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World},
    author={Zellers, Rowan and Holtzman, Ari and Peters, Matthew and Mottaghi, Roozbeh and Kembhavi, Aniruddha and Farhadi, Ali and Choi, Yejin},
    booktitle ={Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics},
    year={2021}
}

See more at https://rowanzellers.com/piglet

What this repo contains

Physical dynamics model

  • You can get data yourself by sampling trajectories in sampler/ and then converting them to tfrecord (which is the format I used) in tfrecord/. I also have the exact tfrecords I used at gs://piglet-data/physical-interaction-tfrecords/ -- they're big files so I turned on 'requester pays' for them.
  • You can pretrain the model and evaluate it in model/interact/train.py and model/interact/intrinsic_eval.py
  • Alteratively feel free to use my checkpoint: gs://piglet/checkpoints/physical_dynamics_model/model.ckpt-5420

Language model

  • You can process data (also in tfrecord format) using data/zeroshot_lm_setup/prepare_zslm_tfrecord.py, or download at gs://piglet-data/text-data/. I have both 'zero-shot' tfrecord data, basically a version of BookCorpus and Wikipedia where certain concepts are filtered out, as well as non-zero shot (regularly processed). This was used to evaluate generalization to new concepts.
  • Train the model using model/lm/train.py
  • Alternatively, feel free to just use my checkpoint: gs://piglet/checkpoints/language_model/model.ckpt-20000

Tying it all together

  • Everything you need for this is in model/predict_statechange/ building on both the physical dynamics model and language model pretrained.
  • I have annotations in data/annotations.jsonl for training and evaluating both tasks -- PIGPeN-NLU and PIGPeN-NLG.
  • Alternatively you can download my checkpoints at gs://piglet/checkpoints/pigpen-nlu-model/ for NLU (predicting state change given english text) or gs://piglet/checkpoints/pigpen-nlg-model/ for NLG.

That's it!

Getting the environment set up

I used TPUs for this project so those are the only things I support right now, sorry!

I used tensorflow 1.15.5 and TPUs for this project. My recommendation is to use ctpu to start up a VM with access to a v3-8 TPU. Then, use the following command to install dependencies:

curl -o ~/miniconda.sh -O  https://repo.continuum.io/miniconda/Miniconda3-4.5.4-Linux-x86_64.sh  && \
     chmod +x ~/miniconda.sh && \
     ~/miniconda.sh -b -p ~/conda && \
     rm ~/miniconda.sh && \
     ~/conda/bin/conda install -y python=3.7 tqdm numpy pyyaml scipy ipython mkl mkl-include cython typing h5py pandas && ~/conda/bin/conda clean -ya
     
echo 'export PATH=~/conda/bin:$PATH' >>~/.bashrc
source ~/.bashrc
pip install "tensorflow==1.15.5"
pip install --upgrade google-api-python-client oauth2client
pip install -r requirements.txt
Owner
Rowan Zellers
Rowan Zellers
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
Conversion between units used in magnetism

convmag Conversion between various units used in magnetism The conversions between base units available are: T - G : 1e4

0 Jul 15, 2021
Official PyTorch implementation of "Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning" (ICCV2021 Oral)

MeTAL - Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning (ICCV2021 Oral) Sungyong Baik, Janghoon Choi, Heewon Kim, Dohee Cho, Jaes

Sungyong Baik 44 Dec 29, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 114 Jan 06, 2023
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
Pytorch Implementations of large number classical backbone CNNs, data enhancement, torch loss, attention, visualization and some common algorithms.

Torch-template-for-deep-learning Pytorch implementations of some **classical backbone CNNs, data enhancement, torch loss, attention, visualization and

Li Shengyan 270 Dec 31, 2022
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

3 Jun 22, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Fluency ENhanced Sentence-bert Evaluation (FENSE), metric for audio caption evaluation. And Benchmark dataset AudioCaps-Eval, Clotho-Eval.

FENSE The metric, Fluency ENhanced Sentence-bert Evaluation (FENSE), for audio caption evaluation, proposed in the paper "Can Audio Captions Be Evalua

Zhiling Zhang 13 Dec 23, 2022