NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

Overview

NAS-HPO-Bench-II API

Overview

NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

It helps

  • a fair and low-cost evaluation/comparison of joint optimization (NAS+HPO) methods
  • a detailed analysis of the relationship between architecture/training HPs and performances

Our experimental analysis supports the importance of joint optimization. Please see our paper for details.

This repo provides API for NAS-HPO-Bench-II to make benchmarking easy. You can query our data when evaluating models in the search process of AutoML methods instead of training the models at a high cost.

If you use the dataset, please cite:

@InProceedings{hirose2021bench,
  title={{NAS-HPO-Bench-II}: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters},
  author={Hirose, Yoichi and Yoshinari, Nozomu and Shirakawa,  Shinichi},
  booktitle={Proceedings of the 13th Asian Conference on Machine Learning},
  year={2021}
}

The code for training models is here.

Dataset Overview

The total size of the search space is 192K. The dataset includes

  • the exact data of all the models in the search space for 12 epoch training
  • the surrogate data predicting accuracies after 200 epoch training

Architecture Search Space

The overall CNN architecture is constructed by stacking cells represented as a directed acyclic graph (DAG). Each edge in the graph indicates one of the four operations.

  • 3x3 convolution (ReLU activation, 3x3 convolution with stride 1, then batch normalization)
  • 3x3 average pooling with stride 1
  • Skip, which outputs the input tensor
  • Zero, which outputs the zero tensor with the same dimension as the input

It is based on NAS-Bench-201 and the only difference is that we exclude the 1x1 convolution operation from the options.

Training HP Search Space

The combination of eight initial learning rates and six batch sizes are used.

Hyperparameter Options
Batch Size 16, 32, 64, 128, 256, 512
Learning Rate 0.003125, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4

Installation

Run

pip install nashpobench2api

, and download the API dataset from Google Drive (93.7MB), then put the data in some directory (default: ./data). This API supports python >= 3.6 (and no external library dependencies).

If you want to run the codes in bench_algos, run pip install -r requirements.txt.

Getting Started

Create an API instance to get access to the dataset.

from nashpobench2api import NASHPOBench2API as API
api = API('/path/to/dataset')

You can get 12-epoch valid accuracy (%) and train+valid training cost (sec.) of the specified configuration.

acc, cost = api.query_by_key(
	cellcode='0|10|210',
	batch_size=256,
	lr=0.1 )

Here, cellcode represents one of the architectures in the search space. As shown in the figure below, the numbers in the cellcode mean the type of operations, and the position of the numbers shows the edge '(A) | (B)(C) | (D)(E)(F)'.

In the querying process, the api instance remembers and shows the log (what you have queried). You can reduce the log if set verbose=False when initializing api.

When the querying process has finished, you can get the test accuracy of the configuration with the best valid accuracy in the queried configurations.

results = api.get_results()

results is a dictionary with the keys below.

Key Explanation
acc_trans a transition of valid accuracies api have queried
key_trans a transition of keys (=cellcode, lr, batch_size) api have queried
best_acc_trans a transition of the best valid accuracies (%) api have queried
best_key_trans a transition of the best keys (=cellcode, lr, batch_size) api have queried
total_cost_trans a transition of train+valid costs (sec.)
final_accs 12-epoch and 200-epoch test accuracies (%) of the key with the best valid accuracy api have queried

You can reset what api have remebered, which is useful when multiple runs.

api.reset_log_data()

The examples of benchmarking codes are in the bench_algos directory. Especially, random_search.py is the simplest code and easy to understand (the core part is random_search()).

Work in Progress

  • Upload the dataset as DataFrame for visualization/analysis.
  • Upload codes for a surrogate model.
  • Upload the trained models.
Owner
yoichi hirose
yoichi hirose
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Codes for "Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier"

Deep-RTC [project page] This repository contains the source code accompanying our ECCV 2020 paper. Solving Long-tailed Recognition with Deep Realistic

Gina Wu 16 May 26, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022