NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

Overview

NAS-HPO-Bench-II API

Overview

NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

It helps

  • a fair and low-cost evaluation/comparison of joint optimization (NAS+HPO) methods
  • a detailed analysis of the relationship between architecture/training HPs and performances

Our experimental analysis supports the importance of joint optimization. Please see our paper for details.

This repo provides API for NAS-HPO-Bench-II to make benchmarking easy. You can query our data when evaluating models in the search process of AutoML methods instead of training the models at a high cost.

If you use the dataset, please cite:

@InProceedings{hirose2021bench,
  title={{NAS-HPO-Bench-II}: A Benchmark Dataset on Joint Optimization of Convolutional Neural Network Architecture and Training Hyperparameters},
  author={Hirose, Yoichi and Yoshinari, Nozomu and Shirakawa,  Shinichi},
  booktitle={Proceedings of the 13th Asian Conference on Machine Learning},
  year={2021}
}

The code for training models is here.

Dataset Overview

The total size of the search space is 192K. The dataset includes

  • the exact data of all the models in the search space for 12 epoch training
  • the surrogate data predicting accuracies after 200 epoch training

Architecture Search Space

The overall CNN architecture is constructed by stacking cells represented as a directed acyclic graph (DAG). Each edge in the graph indicates one of the four operations.

  • 3x3 convolution (ReLU activation, 3x3 convolution with stride 1, then batch normalization)
  • 3x3 average pooling with stride 1
  • Skip, which outputs the input tensor
  • Zero, which outputs the zero tensor with the same dimension as the input

It is based on NAS-Bench-201 and the only difference is that we exclude the 1x1 convolution operation from the options.

Training HP Search Space

The combination of eight initial learning rates and six batch sizes are used.

Hyperparameter Options
Batch Size 16, 32, 64, 128, 256, 512
Learning Rate 0.003125, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4

Installation

Run

pip install nashpobench2api

, and download the API dataset from Google Drive (93.7MB), then put the data in some directory (default: ./data). This API supports python >= 3.6 (and no external library dependencies).

If you want to run the codes in bench_algos, run pip install -r requirements.txt.

Getting Started

Create an API instance to get access to the dataset.

from nashpobench2api import NASHPOBench2API as API
api = API('/path/to/dataset')

You can get 12-epoch valid accuracy (%) and train+valid training cost (sec.) of the specified configuration.

acc, cost = api.query_by_key(
	cellcode='0|10|210',
	batch_size=256,
	lr=0.1 )

Here, cellcode represents one of the architectures in the search space. As shown in the figure below, the numbers in the cellcode mean the type of operations, and the position of the numbers shows the edge '(A) | (B)(C) | (D)(E)(F)'.

In the querying process, the api instance remembers and shows the log (what you have queried). You can reduce the log if set verbose=False when initializing api.

When the querying process has finished, you can get the test accuracy of the configuration with the best valid accuracy in the queried configurations.

results = api.get_results()

results is a dictionary with the keys below.

Key Explanation
acc_trans a transition of valid accuracies api have queried
key_trans a transition of keys (=cellcode, lr, batch_size) api have queried
best_acc_trans a transition of the best valid accuracies (%) api have queried
best_key_trans a transition of the best keys (=cellcode, lr, batch_size) api have queried
total_cost_trans a transition of train+valid costs (sec.)
final_accs 12-epoch and 200-epoch test accuracies (%) of the key with the best valid accuracy api have queried

You can reset what api have remebered, which is useful when multiple runs.

api.reset_log_data()

The examples of benchmarking codes are in the bench_algos directory. Especially, random_search.py is the simplest code and easy to understand (the core part is random_search()).

Work in Progress

  • Upload the dataset as DataFrame for visualization/analysis.
  • Upload codes for a surrogate model.
  • Upload the trained models.
Owner
yoichi hirose
yoichi hirose
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
An official TensorFlow implementation of “CLCC: Contrastive Learning for Color Constancy” accepted at CVPR 2021.

CLCC: Contrastive Learning for Color Constancy (CVPR 2021) Yi-Chen Lo*, Chia-Che Chang*, Hsuan-Chao Chiu, Yu-Hao Huang, Chia-Ping Chen, Yu-Lin Chang,

Yi-Chen (Howard) Lo 58 Dec 17, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021