Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Overview

Transformers

Arabic licence plate recognition 🚗

  • Solution to the kaggle competition Machathon 3.0.
  • Ranked in the top 6️⃣ at the final evaluation phase.
  • Check our solution now on collab!
  • Check the solution presentation

Preprocessing Pipeline

The schematic of the processor

Approach

Step1: Preprocessing Enhancments on the image.

  • Most images had bad illumination and noise
    • Morphological operations to Maximize Contrast.
    • Gaussian Blur to remove Noise.
  • Thresholding on both Value and Saturation channels.

Step2: Extracting white plate using countours.

  • Get countours and sort based on Area.
  • Polygon Approximation For noisy countours.
  • Convex hull for Concave polygons.
  • 4-Point transformation For difficult camera angles.

Now have numbers in a countor and letters in another.

Step3: Separating characters from white plate using sliding windows.

Can't use countours to get symbols in white plate since Arabic Letter may consist of multiple charachters e.g ت this may consist of 2/3 countours.

Solution

  • Tuned 2 sliding windows, one for letters' white plate, the other for numbers.
    • Variable window width
    • Window height is the white plate height, since arabic characters may consist multiple parts
  • Selecting which window
    • Must have no black pixels on the sides
    • Must have a specific range of black pixels inside
    • For each group of windows the one with max black pixels is selected

Step4: Character Recognition.

  • Training 2 model since Arabic letters and numbers are similar e.g (أ,1) (5, ه)
    • one for classifing only arabic letters.
    • one for classifying arabic numbers.

Project Organization

Scripts applied on images

./Macathon/code/
├── extract_bbx_xml.ipynb                       : Takes directory of images and their bbx data stored in an xml files, and crop the bbxs from the images.
|                                                 The xml file contains licence label(name), xmin, ymin, xmax, ymax of the bbxs in an image.    
├── extract_bbx_txt.ipynb                       : Takes directory of images and their bbx data stored in a txt files, and crop the bbxs from the images.
|                                                 The txt file corresponding to one image may consist of multiple bbxs, each corresponds to a row of xmin,ymin,xmax,ymax for that bbx.
└── crop_right_noise.ipynb                      : Crops an image with some percentage and replace with the cropped image. 

Model versions

./Macathon/code/
└── model.ipynb                      : - The preprocessing and modeling stage, Contains:
                                          - Preprocessing Functions
                                          - Training both classifers
                                          - Prediction and generating the output csv file

Data Folder

./Macathon/data/
├── challenging_images.rar                      : Contains most challenging images collected from the train data. 
├── cropped_letters.zip                         : 28 Subfolders corresponding to the 28 letter in Arabic alphabet.
|                                                 Each subfolder holds images for the letter it's named after, cropped from the train data distribution.
├── cropped_numbers.zip                         : 10 Subfolders for the 10 numbers.
|                                                 Each subfolder holds images for the number it's named after, cropped from the train data distribution.
├── machathon-3.zip                             : The uploaded data found with the kaggle competition.
└── testLetters.zip                             : 200 images labeled from the test data distribution.
                                                  Each image has a corresponding xml file holding the bbxs locations in it.

Contributors

This masterpiece was designed, and implemented by

Hossam
Hossam Saeed
Mostafa wael
Mostafa Wael
Nada Elmasry
Nada Elmasry
Noran Hany
Noran Hany
Owner
Noran Hany
Noran Hany
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
Paddle-Skeleton-Based-Action-Recognition - DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN

Paddle-Skeleton-Action-Recognition DecoupleGCN-DropGraph, ASGCN, AGCN, STGCN. Yo

Chenxu Peng 3 Nov 02, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
This is a code repository for the paper "Graph Auto-Encoders for Financial Clustering".

Repository for the paper "Graph Auto-Encoders for Financial Clustering" Requirements Python 3.6 torch torch_geometric Instructions This is a simple c

Edward Turner 1 Dec 02, 2021
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 02, 2022
Image inpainting using Gaussian Mixture Models

dmfa_inpainting Source code for: MisConv: Convolutional Neural Networks for Missing Data (to be published at WACV 2022) Estimating conditional density

Marcin Przewięźlikowski 8 Oct 09, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022