PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

Related tags

Deep Learningpulse
Overview

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

Code accompanying CVPR'20 paper of the same title. Paper link: https://arxiv.org/pdf/2003.03808.pdf

NOTE

We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that this is impossible - PULSE makes imaginary faces of people who do not exist, which should not be confused for real people. It will not help identify or reconstruct the original image.

We also want to address concerns of bias in PULSE. We have now included a new section in the paper and an accompanying model card directly addressing this bias.


Transformation Preview Transformation Preview Transformation Preview

Table of Contents

What does it do?

Given a low-resolution input image, PULSE searches the outputs of a generative model (here, StyleGAN) for high-resolution images that are perceptually realistic and downscale correctly.

Transformation Preview

Usage

The main file of interest for applying PULSE is run.py. A full list of arguments with descriptions can be found in that file; here we describe those relevant to getting started.

Prereqs

You will need to install cmake first (required for dlib, which is used for face alignment). Currently the code only works with CUDA installed (and therefore requires an appropriate GPU) and has been tested on Linux and Windows. For the full set of required Python packages, create a Conda environment from the provided YAML, e.g.

conda create -f pulse.yml 

or (Anaconda on Windows):

conda env create -n pulse -f pulse.yml
conda activate pulse

In some environments (e.g. on Windows), you may have to edit the pulse.yml to remove the version specific hash on each dependency and remove any dependency that still throws an error after running conda env create... (such as readline)

dependencies
  - blas=1.0=mkl
  ...

to

dependencies
  - blas=1.0
 ...

Finally, you will need an internet connection the first time you run the code as it will automatically download the relevant pretrained model from Google Drive (if it has already been downloaded, it will use the local copy). In the event that the public Google Drive is out of capacity, add the files to your own Google Drive instead; get the share URL and replace the ID in the https://drive.google.com/uc?=ID links in align_face.py and PULSE.py with the new file ids from the share URL given by your own Drive file.

Data

By default, input data for run.py should be placed in ./input/ (though this can be modified). However, this assumes faces have already been aligned and downscaled. If you have data that is not already in this form, place it in realpics and run align_face.py which will automatically do this for you. (Again, all directories can be changed by command line arguments if more convenient.) You will at this stage pic a downscaling factor.

Note that if your data begins at a low resolution already, downscaling it further will retain very little information. In this case, you may wish to bicubically upsample (usually, to 1024x1024) and allow align_face.py to downscale for you.

Applying PULSE

Once your data is appropriately formatted, all you need to do is

python run.py

Enjoy!

Owner
Alex Damian
Alex Damian
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (—𝘈𝘵𝘵𝘦𝘯𝘵𝘪𝘰𝘯 𝘜-𝘕𝘦𝘵, 𝘚𝘌𝘙𝘦𝘴𝘕𝘦𝘵) and a nested decoder structure with deep supervision (—𝘜𝘕𝘦𝘵++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022