Pytorch Geometric Tutorials

Overview

PytorchGeometricTutorial

Hi! We are Antonio Longa and Giovanni Pellegrini, PhD students, and PhD Gabriele Santin, researcher, working between Fondazione Bruno Kessler and the University of Trento, Italy.

This project aims to present through a series of tutorials various techniques in the field of Geometric Deep Learning, focusing on how they work and how to implement them using the Pytorch geometric library, an extension to Pytorch to deal with graphs and structured data, developed by @rusty1s.

You can find our video tutorials on Youtube and at our official website here.

Feel free to join our weekly online tutorial! For more details, have a look at the official website.

Tutorials:

Installation of PyG:

In order to have running notebooks in Colab, we use the following installation commands:

!pip install torch-scatter -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
!pip install torch-sparse -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
!pip install torch-geometric

These version are tested and running in Colab. If instead you run the notebooks on your machine, have a look at the PyG's installation instructions to find suitable versions.

Comments
  • DiffPool tutorial does not work

    DiffPool tutorial does not work

    Thank you for making the videos and notebooks available! They are very nice and helpful. I saw that the DiffPool model still does not work for the version that is uploaded here. I was wondering if you already have the working model available?

    Thank you in advance!

    opened by lisiq 4
  • Some tutorials no longer work with Google Colab

    Some tutorials no longer work with Google Colab

    Tutorial 14 and 15 both no longer work with colab and give this error after the second cell


    OSError Traceback (most recent call last) in () 2 import os 3 import pandas as pd ----> 4 from torch_geometric.data import InMemoryDataset, Data, download_url, extract_zip 5 from torch_geometric.utils.convert import to_networkx 6 import networkx as nx

    6 frames /usr/lib/python3.7/ctypes/init.py in init(self, name, mode, handle, use_errno, use_last_error) 362 363 if handle is None: --> 364 self._handle = _dlopen(self._name, mode) 365 else: 366 self._handle = handle

    OSError: /usr/local/lib/python3.7/dist-packages/torch_sparse/_convert_cpu.so: undefined symbol: _ZNK2at6Tensor5zero_Ev

    opened by itamblyn 2
  • Modify the example1

    Modify the example1

    https://github.com/AntonioLonga/PytorchGeometricTutorial/blob/main/Tutorial1/Tutorial1.ipynb

    I think this example could be modified for the better. In fact, the nums_layer = 1 parameter should be defined in Net, and a layer of GNNStack should be defined according to this parameter in the forward method. This would solve the problem raised by YouTube video 43:29.

    opened by abcdabcd989 2
  • Tutorial 3 code

    Tutorial 3 code

    Hi,

    Thanks for this great tutorials and videos. Really nice work.

    I was wondering about the GATLayer class in the code of tutorial 3. Once the class is made, it is no longer used after the 'Use it' heading in the notebook. Instead, the GATConv from torch geometric is used directly. Then why was the GATLayer class made?

    Thanks, VR

    opened by vandana-rajan 1
  • Error for running

    Error for running "from torch_geometric.nn import Node2Vec"

    while running from torch_geometric.nn import Node2Vec in google colab an error occur OSError: /usr/local/lib/python3.7/dist-packages/torch_sparse/_convert_cpu.so: undefined symbol: _ZNK2at6Tensor5zero_Ev

    what should I do?

    opened by ayreen2 1
  • Adding Colab support for the tutorials

    Adding Colab support for the tutorials

    Thanks for your effort and great work!

    I think, In order to make the tutorials more convenient for a wide audience it would be helpful to add a colab version of the notebooks with the special button, that redirects to the http://colab.research.google.com/.

    All tutorials can be run in colab via adding the notebook from GitHub and adding the cell with the installation of the pytorch-geometric and all dependencies. But the version with native support would make it more convenient.

    opened by Godofnothing 1
  • Question about Tutorial16.ipynb

    Question about Tutorial16.ipynb

    Hello, Thank you for the nice tutorial, it helps a lot to get started! I have a few questions concerning Tutorial16.ipynb: 1/ what is the effect of the parameter lin=True? 2/ what's the effect of changing the number of hidden and output channels? 3/ what is the purpose of l1, e1, l2, e2? Best, Claire

    opened by claireguepin 0
  • Some questions I found in this tutorial

    Some questions I found in this tutorial

    Hi, this is a nice tutorial. However, I find that there are some minor problems with the materials.

    1. I fond that they are same links so I think you can delete one. image
    2. In the node2vec practice colab notebook, the current installation requirement will lead the colab environment to break down. I tried this combination and it works: image Could you please figure out why? Thanks a lot!
    opened by HelloWorldLTY 0
Releases(v1.0.0)
Owner
Antonio Longa
Antonio Longa
This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our paper "Accounting for Gaussian Process Imprecision in Bayesian Optimization"

Prior-RObust Bayesian Optimization (PROBO) Introduction, TOC This repository contains Prior-RObust Bayesian Optimization (PROBO) as introduced in our

Julian Rodemann 2 Mar 19, 2022
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022