An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

Overview

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in "Rethinking floating point for deep learning" [1].

There are two types of floating point implemented:

  • N-bit (N, l, alpha, beta, gamma) log with ELMA [1]
  • N-bit (N, s) (linear) posit [2]

with partial implementation of IEEE-style (e, s) floating point (likely quite buggy) and non-posit tapered log.

8-bit (8, 1, 5, 5, 7) log is the format described in "Rethinking floating point for deep learning", shown within to be more energy efficient than int8/32 integer multiply-add at 28 nm and an effective drop-in replacement for IEEE 754 binary32 single precision floating point via round to nearest even for CNN inference on ResNet-50 on ImageNet.

[1] Johnson, J. "Rethinking floating point for deep learning." (2018). https://arxiv.org/abs/1811.01721

[2] Gustafson, J. and Yonemoto, I. "Beating floating point at its own game: Posit arithmetic." Supercomputing Frontiers and Innovations 4.2 (2017): 71-86.

Requirements

You will need:

  • a PyTorch CPU installation
  • a C++11-compatible compiler to use to generate a PyTorch C++ extension module
  • the ImageNet ILSVRC12 image validation set
  • an Intel OpenCL for FPGA compatible board
  • a Quartus Prime Pro installation with the Intel OpenCL for FPGA compiler

rtl contains the SystemVerilog modules needed for the design.

bitstream contains the OpenCL that wraps the RTL modules.

cpp contains host CPU-side code for interacting with the FPGA OpenCL design.

py contains the top-level functionality to compile the CPU code and run networks.

Flow

In bitstream, run

./build_lib.sh <design>

followed by

./build_afu.sh <design> (this will take several hours to synthesize the FPGA design)

where <design> is one of loglib or positlib. The aoc/aocl tools, Quartus, Quartus license file, OpenCL BSP etc. must be in your path/environment. loglib is configured to generate a design with 8-bit (8, 1, 5, 5, 7) log arithmetic, and positlib is configured to generate a design with 8-bit (8, 1) posit arithmetic by default.

The aoc build seems to require a Python 2.x interpreter in the path, otherwise it will fail.

Update the aocx_file in py/run_fpga_resnet.py to your choice of design.

Update valdir towards the end of py/validate.py to point to a Torch dataset loader compatible installation of the ImageNet validation set.

Using a python environment with PyTorch available, in py run:

python run_fpga_resnet.py

If successful, this will run the complete validation set against the FPGA design. This requires a Python 3.x interpreter.

RTL comments

The modules used by the OpenCL design reside in rtl/log/operators and rtl/posit/operators. You can see how they are assembled here.

rtl/paper_syn contains the modules used in the paper's 28 nm synthesis results (Paper*Top.sv are the top-level modules). Waves_*.sv are the testbench programs used to generate switching activity for power analysis output.

You will have to provide your own Synopsys Design Compiler scripts/flow/cell libraries/PDK/etc. for synthesis, as we are not allowed to share details on which 28 nm semiconductor process was used or our Design Compiler synthesis scripts.

Other comments

The posit encoding implemented herein implements negative values with a sign bit rather than two's complement encoding. It is a TODO to change it, but the cost either way is largely dwarfed by other concerns in my opinion.

The FPGA design itself is not super flexible yet to support different bit widths than 8. loglib is restricted to N <= 8 bits at the moment, while positlib should be ok for N <= 16 bits, though some of the larger designs may run into FPGA resource issues if synthesized for the FPGA.

Contributions

This repo currently exists as a proof of concept. Contributions may be considered, but the design is mostly that which is needed to reproduce the results from the paper.

License

This code is licensed under CC-BY-NC 4.0.

This code also includes and uses the Single Python Fixed-Point Module for LUT SystemVerilog log-to-linear and linear-to-log mapping module generation in rtl/log/luts, which is licensed by the Python-2.4.2 license.

Owner
Facebook Research
Facebook Research
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022