Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

Overview

FFD Source Code

Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

The proposed network framework with attention mechanism

Project Webpage

See the MSU CVLab website for project details and access to the DFFD dataset.

http://cvlab.cse.msu.edu/project-ffd.html

Notes

This code is provided as example code, and may not reflect a specific combination of hyper-parameters presented in the paper.

Description of contents

  • xception.py: Defines the Xception network with the attention mechanism
  • train*.py: Train the model on the train data
  • test*.py: Evaluate the model on the test data

Acknowledgements

If you use or refer to this source code, please cite the following paper:

@inproceedings{cvpr2020-dang,
  title={On the Detection of Digital Face Manipulation},
  author={Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, Anil Jain},
  booktitle={In Proceeding of IEEE Computer Vision and Pattern Recognition (CVPR 2020)},
  address={Seattle, WA},
  year={2020}
}
Comments
  • Is it possible to release the script for generating edited images by FaceApp?

    Is it possible to release the script for generating edited images by FaceApp?

    Hi, Thanks for releasing the code and dataset! Part of your dataset is generated by FaceApp (using automated scripts running on android devices). I am wondering if you could also release this android script? I also plan to generate some edited images using FaceApp, and an automated script will be quite helpful!! Thanks!

    opened by zjxgithub 2
  • Question about mask images in dataset

    Question about mask images in dataset

    Thank you for releasing the code and the DFFD dataset!

    I noticed that in the "faceapp" part of the dataset, there is a ground-truth manipulation masks image for each fake image. How are these mask images generated?

    The paper mentioned that the ground-truth manipulation mask were calculated by source images and fake images, but I still did not understand how.

    Thank you for answering my question. :)

    opened by piddnad 2
  • Serveral question about dataset

    Serveral question about dataset

    Thanks for releasing the code and the dataset. I have some questions for the dataset,

    • In align_faces/align_faces.m inside scripts.zip, there is a file called box.txt. But I can't find it anywhere. It seems crucial to align and crop the images.

    image

    • All of the images in dataset are in the resolution of 299x299. I wonder how did you process the images in CelebA. I remember the aligned and cropped image in CelebA are in the resolution of 128x128.
    opened by wheatdog 2
  • attention map and gt mask matching

    attention map and gt mask matching

    Hi, thanks for your work. I have a small question. The attention map size is 19x19, but the gt mask (diff image) is 299x299. Are they matched by downsampling gt mask?

    opened by neverUseThisName 1
  • Are label information leaked in testing process?

    Are label information leaked in testing process?

    Thanks for uploading your code and dataset. After a short view I'm considering your predicting process is like: generating masks with scripts on test data, using test data and their masks to feed into trained model to predict. But I was confused that in your test.py file, you get dataset like this:

    def get_dataset():
      return Dataset('test', BATCH_SIZE, CONFIG['img_size'], CONFIG['map_size'], CONFIG['norms'], SEED)
    

    then you differ masks of real and fake photos by using their labels in dataset.py:

      def __getitem__(self, index):
        im_name = self.images[index]
        img = self.load_image(im_name)
        if self.label_name == 'Real':
          msk = torch.zeros(1,19,19)
        else:
          msk = self.load_mask(im_name.replace('Fake/', 'Mask/'))
        return {'img': img, 'msk': msk, 'lab': self.label, 'im_name': im_name}
    

    Is it fair to distinguish masks by label_name in the testing process? I also wonder how to create Mask/ folder when you predict fake images that donot have corresponding real images?

    If i misunderstand anything please correct me, thanks a lot!

    opened by insomnia1996 0
  • May I know where I can find the imagenet pretrained model?

    May I know where I can find the imagenet pretrained model?

    Hi,

    For using pretrained model: xception-b5690688.pth, may I know where I can find the model specified here: https://github.com/JStehouwer/FFD_CVPR2020/blob/master/xception.py#L243

    Thanks.

    opened by ilovecv 2
  • Error in get_batch in train.py

    Error in get_batch in train.py

    Greetings,

    Many thanks to your wok. I am very interested in your work and I want to try out your model. When I ran the train*.py, I encounter the following issue , here are part of the error messages.

    batch = [next(_.generator, None) for _ in self.datasets]
    

    File "D:\Fake Detector\attention_map_to_detect_manipulation\FFD_CVPR2020\dataset.py", line 91, in self = reduction.pickle.load(from_parent)batch = [next(_.generator, None) for _ in self.datasets]

    File "D:\Fake Detector\attention_map_to_detect_manipulation\FFD_CVPR2020\dataset.py", line 73, in get_batch EOFError: Ran out of input

    and reduction.dump(process_obj, to_child) File "C:\Users\xxx\anaconda3\envs\d2l\lib\multiprocessing\reduction.py", line 60, in dump ForkingPickler(file, protocol).dump(obj) TypeError: cannot pickle 'generator' object

    What I did is just make directory data/train/Real(Fake) and place my images dataset into the corresponding folder and then ran the train.py. However, it seems it can't work. May I ask whether I missed anything. I am running the program in windows system and I don't know that will affect as well.

    opened by bitrookie 1
  • Use pretrained model to classify own data?

    Use pretrained model to classify own data?

    Hi @JStehouwer - thank you so much for the awesome code (v2.1)!

    I am trying to use your pretrained model on my own images in order to try out the classifier.

    Are you able to confirm:

    • Filename and format of pretrained model
    • Whether anything else is needed to perform the above classification

    Thanks again

    opened by jtlz2 4
  • dataset questions

    dataset questions

    1、 Whether the published dataset ( FFHQ、FaceAPP、StarGAN、PGGAN、StyleGAN ) has been randomly selected ? And How to generate starGAN mask, how to determine the specific CelebA picture used ? 2、 I have downloaded the FF++、CelebA and DeepFaceLab dataset, how to randomly select the training set, test set and verification set ? And how to set the random seed ? 3、 Which data sets need align processing, and how, please specify ?

    Thank you for your work, it is very good, I will follow your work, but now the problem of dataset makes my work difficult, I hope to get your help.

    opened by miaoct 2
Releases(v2.1)
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

250 Jan 08, 2023
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021