4D Human Body Capture from Egocentric Video via 3D Scene Grounding

Overview

4D Human Body Capture from Egocentric Video via 3D Scene Grounding

[Project] [Paper]

Installation:

Our method requires the same dependencies as SMPLify-X and OpenPose. We refer to the official implementation fo SMPLify-X and OpenPose for installation details.

Our method also needs the installation of Chamfer Pytorch to calculate the chamfer distnace for enforceing human-scene constraints

Data Preparation:

Step 1: Dump video frames with desired fps (30) with utils/dump_videos.py. Run utils/split_frames to segment videos into equally long subatom clips. Repack frames to videos with utils/pack_videos.py (This is for faster openpose I/O).

Step 2: Run openpose_call.py under openpose folder to get human body keypoints, then run utils/openpose_helper to rename keypoint.json and run utils/openpose_filter.py to keep the most confident human keypoints.

Step 3: Run Smplify-X model with specified focal length and data directory. This step may take up to several hours. For instance:

python3 smplifyx/main.py --config cfg_files/fit_smplx.yaml  --data_folder /home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1 --output_folder /home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1/body_gen --visualize="False" --model_folder ./models --vposer_ckpt ./vposer --part_segm_fn smplx_parts_segm.pkl --focal_length 694.0

Step 4: Run Colmap for to generate scene mesh and camera trajectory. This step make take up to several hours depneding on the complexity of the scene. Then Run utils/camerpose_helper and utils/pointscloud_helper.py to generate desired points cloud file and camera pose.

Joint Optimization with 3D Scene Context:

Run global_optimization.py to conduct temproal smoothing and enforce human-scene constraints:

python3 global_optimization.py '/home/miao/data/rylm/packed_data/miao_mainbuidling_0-1/body_gen' '/home/miao/data/rylm/packed_data/miao_mainbuidling_0-1/smoothed_body

The resulting data should be organized as following:

  • datafolder:
    • videoname:
      • images: folder that contains all video frames
      • keypoints: folder that contains all body keypoints
      • body_gen: folder that contains all body mesh files:
      • smoothed_boyd: folder that contains all jointly-optimized body mesh files:
      • camera_pose.txt: text file that contains camera pose at each temporal footprint
      • meshed-poisson.ply: scene mesh file from dense reconstruction
      • camera.txt: text file that contains camera parameters
      • xyz.ply point cloud file. (use meash lab to convert .xyz file to .ply file)

Visualization in the World Coordinate:

Run global_vis.py to transform the body mesh in pivot coordinate to world coordinate. By default the viewpoint of open3d is the initial position camera trajectory. Setting bool flag to 'True' will resulting into a open3d viewpoint moving the same way as camera viewer.

python3 global_vis.py '/home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1/' False

Visualization in the Egocentric Coordinate:

Run vis.py to view recosntrcuted body mesh on image plane.

python3 vis.py '/home/miao/data/rylm/segmented_data/miao_mainbuilding_0-1/'

Citation

If you find our code useful in your research, please use the following BibTeX entry for citation.

@inproceedings{liu20204d,
  title={4D Human Body Capture from Egocentric Video via 3D Scene Grounding},
  author={Liu, Miao and Yang, Dexin and Zhang, Yan and Cui, Zhaopeng and Rehg, James M and Tang, Siyu},
  booktitle={3DV},
  year={2021}
}
Owner
Miao Liu
Miao Liu
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Hiroshechka Y 33 Dec 26, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019).

CapsGNN ⠀⠀ A PyTorch implementation of Capsule Graph Neural Network (ICLR 2019). Abstract The high-quality node embeddings learned from the Graph Neur

Benedek Rozemberczki 1.2k Jan 02, 2023
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022