Light-Head R-CNN

Overview

Light-head R-CNN

Introduction

We release code for Light-Head R-CNN.

This is my best practice for my research.

This repo is organized as follows:

light_head_rcnn/
    |->experiments
    |    |->user
    |    |    |->your_models
    |->lib       
    |->tools
    |->output

Main Results

  1. We train on COCO trainval which includes 80k training and 35k validation images. Test on minival which is a 5k subset in validation datasets. Noticing test-dev should be little higher than minival.
  2. We provide some crutial ablation experiments details, and it is easy to diff the difference.
  3. We share our training logs in GoogleDrive output folder, which contains dump models, training loss and speed of each steps. (experiments are done on 8 titan xp, and 2batches/per_gpu. Training should be within one day.)
  4. Because the limitation of the time, extra experiments are comming soon.
Model Name [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
R-FCN, ResNet-v1-101
our reproduce baseline
35.5 54.3 33.8 12.8 34.9 46.1
Light-Head R-CNN
ResNet-v1-101
38.2 60.9 41.0 20.9 42.2 52.8
Light-Head,ResNet-v1-101
+align pooling
39.3 61.0 42.4 22.2 43.8 53.2
Light-Head,ResNet-v1-101
+align pooling + nms0.5
40.0 62.1 42.9 22.5 44.6 54.0

Experiments path related to model:

experiments/lizeming/rfcn_reproduce.ori_res101.coco.baseline
experiments/lizeming/light_head_rcnn.ori_res101.coco 
experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign

Requirements

  1. tensorflow-gpu==1.5.0 (We only test on tensorflow 1.5.0, early tensorflow is not supported because of our gpu nms implementation)
  2. python3. We recommend using Anaconda as it already includes many common packages. (python2 is not tested)
  3. Python packages might missing. pls fix it according to the error message.

Installation, Prepare data, Testing, Training

Installation

  1. Clone the Light-Head R-CNN repository, and we'll call the directory that you cloned Light-Head R-CNNN as ${lighthead_ROOT}.
git clone https://github.com/zengarden/light_head_rcnn
  1. Compiling
cd ${lighthead_ROOT}/lib;
bash make.sh

Make sure all of your compiling is successful. It may arise some errors, it is useful to find some common compile errors in FAQ

  1. Create log dump directory, data directory.
cd ${lighthead_ROOT};
mkdir output
mkdir data

Prepare data

data should be organized as follows:

data/
    |->imagenet_weights/res101.ckpt
    |->MSCOCO
    |    |->odformat
    |    |->instances_xxx.json
    |    |train2014
    |    |val2014

Download res101 basemodel:

wget -v http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz
tar -xzvf resnet_v1_101_2016_08_28.tar.gz
mv resnet_v1_101.ckpt res101.ckpt

We transfer instances_xxx.json to odformat(object detection format), each line in odformat is an annotation(json) for one image. Our transformed odformat is shared in GoogleDrive odformat.zip .

Testing

  1. Using -d to assign gpu_id for testing. (e.g. -d 0,1,2,3 or -d 0-3 )
  2. Using -s to visualize the results.
  3. Using '-se' to specify start_epoch for testing.

We share our experiments output(logs) folder in GoogleDrive. Download it and place it to ${lighthead_ROOT}, then test our release model.

e.g.

cd experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
python3 test.py -d 0-7 -se 26

Training

We provide common used train.py in tools, which can be linked to experiments folder.

e.g.

cd experiments/lizeming/light_head_rcnn.ori_res101.coco.ps_roialign
python3 config.py -tool
cp tools/train.py .
python3 train.py -d 0-7

Features

This repo is designed be fast and simple for research. There are still some can be improved: anchor_target and proposal_target layer are tf.py_func, which means it will run on cpu.

Disclaimer

This is an implementation for Light-Head R-CNN, it is worth noting that:

  • The original implementation is based on our internal Platform used in Megvii. There are slight differences in the final accuracy and running time due to the plenty details in platform switch.
  • The code is tested on a server with 8 Pascal Titian XP gpu, 188.00 GB memory, and 40 core cpu.
  • We rewrite a faster nms in our inner platform, while hear we use tf.nms instead.

Citing Light-Head R-CNN

If you find Light-Head R-CNN is useful in your research, pls consider citing:

@article{li2017light,
  title={Light-Head R-CNN: In Defense of Two-Stage Object Detector},
  author={Li, Zeming and Peng, Chao and Yu, Gang and Zhang, Xiangyu and Deng, Yangdong and Sun, Jian},
  journal={arXiv preprint arXiv:1711.07264},
  year={2017}
}

FAQ

  • fatal error: cuda/cuda_config.h: No such file or directory

First, find where is cuda_config.h.

e.g.

find /usr/local/lib/ | grep cuda_config.h

then export your cpath, like:

export CPATH=$CPATH:/usr/local/lib/python3.5/dist-packages/external/local_config_cuda/cuda/
Owner
jemmy li
jemmy li
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Repository for "Exploring Sparsity in Image Super-Resolution for Efficient Inference", CVPR 2021

SMSR Reposity for "Exploring Sparsity in Image Super-Resolution for Efficient Inference" [arXiv] Highlights Locate and skip redundant computation in S

Longguang Wang 225 Dec 26, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Dec 31, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023