Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

Overview

LMSOC: An Approach for Socially Sensitive Pretraining

Open All Collab Binder

image

Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear at 2021 Conference on Empirical Methods in Natural Language Processing: Findings.

Abstract

While large-scale pretrained language models have been shown to learn effective linguistic representations for many NLP tasks, there remain many real-world contextual aspects of language that current approaches do not capture. For instance, consider a cloze-test "I enjoyed the ____ game this weekend": the correct answer depends heavily on where the speaker is from, when the utterance occurred, and the speaker's broader social milieu and preferences. Although language depends heavily on the geographical, temporal, and other social contexts of the speaker, these elements have not been incorporated into modern transformer-based language models. We propose a simple but effective approach to incorporate speaker social context into the learned representations of large-scale language models. Our method first learns dense representations of social contexts using graph representation learning algorithms and then primes language model pretraining with these social context representations. We evaluate our approach on geographically-sensitive language-modeling tasks and show a substantial improvement (more than 100% relative lift on MRR) compared to baselines.

Citation

Please cite as:

Kulkarni, V., Mishra, S., & Haghighi, A. (2021). LMSOC: An Approach for Socially Sensitive Pretraining. Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: Findings. arXiv

@inproceedings{kulkarni2021lmsoc,
  title={LMSOC: An Approach for Socially Sensitive Pretraining},
  author={Kulkarni, Vivek and Mishra, Shubhanshu and Haghighi, Aria},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: Findings},
  year={2021}
  address={Online},
  publisher={Association for Computational Linguistics},
  pages={1--9},
  eprint={2110.10319},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}

Reproducibility

NOTE: Dependencies are specified in the notebooks. But we have also encluded an requirements.txt and environment.yml files to install dependencies using pip or conda.

  • Create Social Context Embeddings via the example notebook embed_time_toy_task.ipynb which contains the implementation of how to embed time for Task 1 in the paper.
  • Upload the files in data/ to the location where you will run the next notebook.
  • The notebook lmsoc_train_and_eval_toy_task.ipynb contains the LMSOC training code.
    • NOTE: This notebook assumes you have already trained social context embeddings for the data you have (for example, here the social context is time).
    • It is a runnable colab notebook which demonstrates the entire process of training and evaluating LMSOC as described in the paper.
    • If run, it will reproduce the experimental setup for Task 1 and ultimately yield Figure 2.
    • In order to run this notebook in colab, open this notebook in Google Colab and upload the files in "data" directory to your colab workspace.

Security Issues?

Please report sensitive security issues via Twitter's bug-bounty program (https://hackerone.com/twitter) rather than GitHub.

Owner
Twitter Research
Twitter #opensource projects related to our published research
Twitter Research
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Lacmus is a cross-platform application that helps to find people who are lost in the forest using computer vision and neural networks.

lacmus The program for searching through photos from the air of lost people in the forest using Retina Net neural nwtwork. The project is being develo

Lacmus Foundation 168 Dec 27, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Ian Covert 130 Jan 01, 2023
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Saeed Lotfi 28 Dec 12, 2022
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022