SMPL-X: A new joint 3D model of the human body, face and hands together

Related tags

Deep Learningsmplx
Overview

SMPL-X: A new joint 3D model of the human body, face and hands together

[Paper Page] [Paper] [Supp. Mat.]

SMPL-X Examples

Table of Contents

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the terms and conditions and any accompanying documentation before you download and/or use the SMPL-X/SMPLify-X model, data and software, (the "Model & Software"), including 3D meshes, blend weights, blend shapes, textures, software, scripts, and animations. By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use of this github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Disclaimer

The original images used for the figures 1 and 2 of the paper can be found in this link. The images in the paper are used under license from gettyimages.com. We have acquired the right to use them in the publication, but redistribution is not allowed. Please follow the instructions on the given link to acquire right of usage. Our results are obtained on the 483 × 724 pixels resolution of the original images.

Description

SMPL-X (SMPL eXpressive) is a unified body model with shape parameters trained jointly for the face, hands and body. SMPL-X uses standard vertex based linear blend skinning with learned corrective blend shapes, has N = 10, 475 vertices and K = 54 joints, which include joints for the neck, jaw, eyeballs and fingers. SMPL-X is defined by a function M(θ, β, ψ), where θ is the pose parameters, β the shape parameters and ψ the facial expression parameters.

News

  • 3 November 2020: We release the code to transfer between the models in the SMPL family. For more details on the code, go to this readme file. A detailed explanation on how the mappings were extracted can be found here.
  • 23 September 2020: A UV map is now available for SMPL-X, please check the Downloads section of the website.
  • 20 August 2020: The full shape and expression space of SMPL-X are now available.

Installation

To install the model please follow the next steps in the specified order:

  1. To install from PyPi simply run:
pip install smplx[all]
  1. Clone this repository and install it using the setup.py script:
git clone https://github.com/vchoutas/smplx
python setup.py install

Downloading the model

To download the SMPL-X model go to this project website and register to get access to the downloads section.

To download the SMPL+H model go to this project website and register to get access to the downloads section.

To download the SMPL model go to this (male and female models) and this (gender neutral model) project website and register to get access to the downloads section.

Loading SMPL-X, SMPL+H and SMPL

SMPL and SMPL+H setup

The loader gives the option to use any of the SMPL-X, SMPL+H, SMPL, and MANO models. Depending on the model you want to use, please follow the respective download instructions. To switch between MANO, SMPL, SMPL+H and SMPL-X just change the model_path or model_type parameters. For more details please check the docs of the model classes. Before using SMPL and SMPL+H you should follow the instructions in tools/README.md to remove the Chumpy objects from both model pkls, as well as merge the MANO parameters with SMPL+H.

Model loading

You can either use the create function from body_models or directly call the constructor for the SMPL, SMPL+H and SMPL-X model. The path to the model can either be the path to the file with the parameters or a directory with the following structure:

models
├── smpl
│   ├── SMPL_FEMALE.pkl
│   └── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smplh
│   ├── SMPLH_FEMALE.pkl
│   └── SMPLH_MALE.pkl
├── mano
|   ├── MANO_RIGHT.pkl
|   └── MANO_LEFT.pkl
└── smplx
    ├── SMPLX_FEMALE.npz
    ├── SMPLX_FEMALE.pkl
    ├── SMPLX_MALE.npz
    ├── SMPLX_MALE.pkl
    ├── SMPLX_NEUTRAL.npz
    └── SMPLX_NEUTRAL.pkl

MANO and FLAME correspondences

The vertex correspondences between SMPL-X and MANO, FLAME can be downloaded from the project website. If you have extracted the correspondence data in the folder correspondences, then use the following scripts to visualize them:

  1. To view MANO correspondences run the following command:
python examples/vis_mano_vertices.py --model-folder $SMPLX_FOLDER --corr-fname correspondences/MANO_SMPLX_vertex_ids.pkl
  1. To view FLAME correspondences run the following command:
python examples/vis_flame_vertices.py --model-folder $SMPLX_FOLDER --corr-fname correspondences/SMPL-X__FLAME_vertex_ids.npy

Example

After installing the smplx package and downloading the model parameters you should be able to run the demo.py script to visualize the results. For this step you have to install the pyrender and trimesh packages.

python examples/demo.py --model-folder $SMPLX_FOLDER --plot-joints=True --gender="neutral"

SMPL-X Examples

Modifying the global pose of the model

If you want to modify the global pose of the model, i.e. the root rotation and translation, to a new coordinate system for example, you need to take into account that the model rotation uses the pelvis as the center of rotation. A more detailed description can be found in the following link. If something is not clear, please let me know so that I can update the description.

Citation

Depending on which model is loaded for your project, i.e. SMPL-X or SMPL+H or SMPL, please cite the most relevant work below, listed in the same order:

@inproceedings{SMPL-X:2019,
    title = {Expressive Body Capture: 3D Hands, Face, and Body from a Single Image},
    author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
    booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2019}
}
@article{MANO:SIGGRAPHASIA:2017,
    title = {Embodied Hands: Modeling and Capturing Hands and Bodies Together},
    author = {Romero, Javier and Tzionas, Dimitrios and Black, Michael J.},
    journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)},
    volume = {36},
    number = {6},
    series = {245:1--245:17},
    month = nov,
    year = {2017},
    month_numeric = {11}
  }
@article{SMPL:2015,
    author = {Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J.},
    title = {{SMPL}: A Skinned Multi-Person Linear Model},
    journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)},
    month = oct,
    number = {6},
    pages = {248:1--248:16},
    publisher = {ACM},
    volume = {34},
    year = {2015}
}

This repository was originally developed for SMPL-X / SMPLify-X (CVPR 2019), you might be interested in having a look: https://smpl-x.is.tue.mpg.de.

Acknowledgments

Facial Contour

Special thanks to Soubhik Sanyal for sharing the Tensorflow code used for the facial landmarks.

Contact

The code of this repository was implemented by Vassilis Choutas.

For questions, please contact [email protected].

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Vassilis Choutas
Ph.D. Student, Perceiving Systems, Max Planck ETH Center for Learning Systems
Vassilis Choutas
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
AOT (Associating Objects with Transformers) in PyTorch

An efficient modular implementation of Associating Objects with Transformers for Video Object Segmentation in PyTorch

162 Dec 14, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023