SMPL-X: A new joint 3D model of the human body, face and hands together

Related tags

Deep Learningsmplx
Overview

SMPL-X: A new joint 3D model of the human body, face and hands together

[Paper Page] [Paper] [Supp. Mat.]

SMPL-X Examples

Table of Contents

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the terms and conditions and any accompanying documentation before you download and/or use the SMPL-X/SMPLify-X model, data and software, (the "Model & Software"), including 3D meshes, blend weights, blend shapes, textures, software, scripts, and animations. By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use of this github repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

Disclaimer

The original images used for the figures 1 and 2 of the paper can be found in this link. The images in the paper are used under license from gettyimages.com. We have acquired the right to use them in the publication, but redistribution is not allowed. Please follow the instructions on the given link to acquire right of usage. Our results are obtained on the 483 × 724 pixels resolution of the original images.

Description

SMPL-X (SMPL eXpressive) is a unified body model with shape parameters trained jointly for the face, hands and body. SMPL-X uses standard vertex based linear blend skinning with learned corrective blend shapes, has N = 10, 475 vertices and K = 54 joints, which include joints for the neck, jaw, eyeballs and fingers. SMPL-X is defined by a function M(θ, β, ψ), where θ is the pose parameters, β the shape parameters and ψ the facial expression parameters.

News

  • 3 November 2020: We release the code to transfer between the models in the SMPL family. For more details on the code, go to this readme file. A detailed explanation on how the mappings were extracted can be found here.
  • 23 September 2020: A UV map is now available for SMPL-X, please check the Downloads section of the website.
  • 20 August 2020: The full shape and expression space of SMPL-X are now available.

Installation

To install the model please follow the next steps in the specified order:

  1. To install from PyPi simply run:
pip install smplx[all]
  1. Clone this repository and install it using the setup.py script:
git clone https://github.com/vchoutas/smplx
python setup.py install

Downloading the model

To download the SMPL-X model go to this project website and register to get access to the downloads section.

To download the SMPL+H model go to this project website and register to get access to the downloads section.

To download the SMPL model go to this (male and female models) and this (gender neutral model) project website and register to get access to the downloads section.

Loading SMPL-X, SMPL+H and SMPL

SMPL and SMPL+H setup

The loader gives the option to use any of the SMPL-X, SMPL+H, SMPL, and MANO models. Depending on the model you want to use, please follow the respective download instructions. To switch between MANO, SMPL, SMPL+H and SMPL-X just change the model_path or model_type parameters. For more details please check the docs of the model classes. Before using SMPL and SMPL+H you should follow the instructions in tools/README.md to remove the Chumpy objects from both model pkls, as well as merge the MANO parameters with SMPL+H.

Model loading

You can either use the create function from body_models or directly call the constructor for the SMPL, SMPL+H and SMPL-X model. The path to the model can either be the path to the file with the parameters or a directory with the following structure:

models
├── smpl
│   ├── SMPL_FEMALE.pkl
│   └── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smplh
│   ├── SMPLH_FEMALE.pkl
│   └── SMPLH_MALE.pkl
├── mano
|   ├── MANO_RIGHT.pkl
|   └── MANO_LEFT.pkl
└── smplx
    ├── SMPLX_FEMALE.npz
    ├── SMPLX_FEMALE.pkl
    ├── SMPLX_MALE.npz
    ├── SMPLX_MALE.pkl
    ├── SMPLX_NEUTRAL.npz
    └── SMPLX_NEUTRAL.pkl

MANO and FLAME correspondences

The vertex correspondences between SMPL-X and MANO, FLAME can be downloaded from the project website. If you have extracted the correspondence data in the folder correspondences, then use the following scripts to visualize them:

  1. To view MANO correspondences run the following command:
python examples/vis_mano_vertices.py --model-folder $SMPLX_FOLDER --corr-fname correspondences/MANO_SMPLX_vertex_ids.pkl
  1. To view FLAME correspondences run the following command:
python examples/vis_flame_vertices.py --model-folder $SMPLX_FOLDER --corr-fname correspondences/SMPL-X__FLAME_vertex_ids.npy

Example

After installing the smplx package and downloading the model parameters you should be able to run the demo.py script to visualize the results. For this step you have to install the pyrender and trimesh packages.

python examples/demo.py --model-folder $SMPLX_FOLDER --plot-joints=True --gender="neutral"

SMPL-X Examples

Modifying the global pose of the model

If you want to modify the global pose of the model, i.e. the root rotation and translation, to a new coordinate system for example, you need to take into account that the model rotation uses the pelvis as the center of rotation. A more detailed description can be found in the following link. If something is not clear, please let me know so that I can update the description.

Citation

Depending on which model is loaded for your project, i.e. SMPL-X or SMPL+H or SMPL, please cite the most relevant work below, listed in the same order:

@inproceedings{SMPL-X:2019,
    title = {Expressive Body Capture: 3D Hands, Face, and Body from a Single Image},
    author = {Pavlakos, Georgios and Choutas, Vasileios and Ghorbani, Nima and Bolkart, Timo and Osman, Ahmed A. A. and Tzionas, Dimitrios and Black, Michael J.},
    booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2019}
}
@article{MANO:SIGGRAPHASIA:2017,
    title = {Embodied Hands: Modeling and Capturing Hands and Bodies Together},
    author = {Romero, Javier and Tzionas, Dimitrios and Black, Michael J.},
    journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)},
    volume = {36},
    number = {6},
    series = {245:1--245:17},
    month = nov,
    year = {2017},
    month_numeric = {11}
  }
@article{SMPL:2015,
    author = {Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J.},
    title = {{SMPL}: A Skinned Multi-Person Linear Model},
    journal = {ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)},
    month = oct,
    number = {6},
    pages = {248:1--248:16},
    publisher = {ACM},
    volume = {34},
    year = {2015}
}

This repository was originally developed for SMPL-X / SMPLify-X (CVPR 2019), you might be interested in having a look: https://smpl-x.is.tue.mpg.de.

Acknowledgments

Facial Contour

Special thanks to Soubhik Sanyal for sharing the Tensorflow code used for the facial landmarks.

Contact

The code of this repository was implemented by Vassilis Choutas.

For questions, please contact [email protected].

For commercial licensing (and all related questions for business applications), please contact [email protected].

Owner
Vassilis Choutas
Ph.D. Student, Perceiving Systems, Max Planck ETH Center for Learning Systems
Vassilis Choutas
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
[CVPR 2022 Oral] Rethinking Minimal Sufficient Representation in Contrastive Learning

Rethinking Minimal Sufficient Representation in Contrastive Learning PyTorch implementation of Rethinking Minimal Sufficient Representation in Contras

36 Nov 23, 2022
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022