PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Overview

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Created by Prarthana Bhattacharyya.

Disclaimer: This is not an official product and is meant to be a proof-of-concept and for academic/educational use only.

This repository contains the PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime, to be presented at ICASSP-2022.

Self-supervision has shown outstanding results for natural language processing, and more recently, for image recognition. Simultaneously, vision transformers and its variants have emerged as a promising and scalable alternative to convolutions on various computer vision tasks. In this paper, we are the first to question if self-supervised vision transformers (SSL-ViTs) can be adapted to two important computer vision tasks in the low-label, high-data regime: few-shot image classification and zero-shot image retrieval. The motivation is to reduce the number of manual annotations required to train a visual embedder, and to produce generalizable, semantically meaningful and robust embeddings.


Results

  • SSL-ViT + few-shot image classification:
  • Qualitative analysis for base-classes chosen by supervised CNN and SSL-ViT for few-shot distribution calibration:
  • SSL-ViT + zero-shot image retrieval:

Pretraining Self-Supervised ViT

  • Run DINO with ViT-small network on a single node with 4 GPUs for 100 epochs with the following command.
cd dino/
python -m torch.distributed.launch --nproc_per_node=4 main_dino.py --arch vit_small --data_path /path/to/imagenet/train --output_dir /path/to/saving_dir
  • For mini-ImageNet pretraining, we use the classes listed in: ssl-vit-fewshot/data/ImageNetSSLTrainingSplit_mini.txt For tiered-ImageNet pretraining, we use the classes listed in: ssl-vit-fewshot/data/ImageNetSSLTrainingSplit_tiered.txt
  • For CUB-200, Cars-196 and SOP, we use the pretrained model from:
import torch
vits16 = torch.hub.load('facebookresearch/dino:main', 'dino_vits16')

Visual Representation Learning with Self-Supervised ViT for Low-Label High-Data Regime

Dataset Preparation

Please follow the instruction in FRN for few-shot image classification and RevisitDML for zero-shot image retrieval to download the datasets and put the corresponding datasets in ssl-vit-fewshot/data and DIML/data folder.

Training and Evaluation for few-shot image classification

  • The first step is to extract features for base and novel classes using the pretrained SSL-ViT.
  • get_dino_miniimagenet_feats.ipynb extracts SSL-ViT features for the base and novel classes.
  • Change the hyper-parameter data_path to use CUB or tiered-ImageNet.
  • The SSL-ViT checkpoints for the various datasets are provided below (Note: this has only been trained without labels). We also provide the extracted features which need to be stored in ssl-vit-fewshot/dino_features_data/.
arch dataset download extracted-train extracted-test
ViT-S/16 mini-ImageNet mini_imagenet_checkpoint.pth train.p test.p
ViT-S/16 tiered-ImageNet tiered_imagenet_checkpoint.pth train.p test.p
ViT-S/16 CUB cub_checkpoint.pth train.p test.p
  • For n-way-k-shot evaluation, we provide miniimagenet_evaluate_dinoDC.ipynb.

Training and Evaluation for zero-shot image retrieval

  • To train the baseline CNN models, run the scripts in DIML/scripts/baselines. The checkpoints are saved in Training_Results folder. For example:
cd DIML/
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh
  • To train the supervised ViT and self-supervised ViT:
cp -r ssl-vit-retrieval/architectures/* DIML/ssl-vit-retrieval/architectures/
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh --arch vits
CUDA_VISIBLE_DEVICES=0 ./script/baselines/cub_runs.sh --arch dino
  • To test the models, first edit the checkpoint paths in test_diml.py, then run
CUDA_VISIBLE_DEVICES=0 ./scripts/diml/test_diml.sh cub200
dataset Loss SSL-ViT-download
CUB Margin cub_ssl-vit-margin.pth
CUB Proxy-NCA cub_ssl-vit-proxynca.pth
CUB Multi-Similarity cub_ssl-vit-ms.pth
Cars-196 Margin cars_ssl-vit-margin.pth
Cars-196 Proxy-NCA cars_ssl-vit-proxynca.pth
Cars-196 Multi-Similarity cars_ssl-vit-ms.pth

Acknowledgement

The code is based on:

Owner
Prarthana Bhattacharyya
Ph.D. Candidate @WISELab-UWaterloo
Prarthana Bhattacharyya
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
This repo is a C++ version of yolov5_deepsort_tensorrt. Packing all C++ programs into .so files, using Python script to call C++ programs further.

yolov5_deepsort_tensorrt_cpp Introduction This repo is a C++ version of yolov5_deepsort_tensorrt. And packing all C++ programs into .so files, using P

41 Dec 27, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022