Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Related tags

Deep Learninggeppo
Overview

Generalized Proximal Policy Optimization with Sample Reuse

This repository is the official implementation of the reinforcement learning algorithm Generalized Proximal Policy Optimization with Sample Reuse (GePPO), which was introduced in the NeurIPS 2021 paper with the same name.

GePPO improves the sample efficiency of the popular on-policy algorithm PPO through principled sample reuse, while still retaining PPO's approximate policy improvement guarantees. GePPO is theoretically supported by a generalized policy improvement lower bound that can be approximated using data from all recent policies.

Requirements

The source code requires the following packages to be installed (we have included the version used to produce the results found in the paper in parentheses):

  • python (3.7.7)
  • gurobi (9.0.2)
  • gym (0.17.1)
  • matplotlib (3.1.3)
  • mujoco-py (1.50.1.68)
  • numpy (1.18.1)
  • scipy (1.4.1)
  • seaborn (0.10.1)
  • tensorflow (2.1.0)

See the file environment.yml for the conda environment used to run our experiments, which can be built with conda using the command conda env create.

The MuJoCo environments used in our experiments require the MuJoCo physics engine and a MuJoCo license. Please see the MuJoCo website for more information on downloading MuJoCo and obtaining a license.

Our implementation of GePPO uses Gurobi to determine the optimal policy weights used in the algorithm, which requires a Gurobi license. Please see the Gurobi website for more information on downloading Gurobi and obtaining a license. Alternatively, GePPO can be run without Gurobi by using uniform policy weights with the --uniform option.

Training

Simulations can be run by calling run on the command line. For example, we can run simulations on the HalfCheetah-v3 environment with PPO and GePPO as follows:

python -m geppo.run --env_name HalfCheetah-v3 --alg_name ppo
python -m geppo.run --env_name HalfCheetah-v3 --alg_name geppo

By default, all algorithm hyperparameters are set to the default values used in the paper. Hyperparameters can be changed to non-default values by using the relevant option on the command line. For more information on the inputs accepted by run, use the --help option.

The results of simulations are saved in the logs/ folder upon completion.

Evaluation

The results of simulations saved in the logs/ folder can be visualized by calling plot on the command line:

python -m geppo.plot --ppo_file <filename> --geppo_file <filename>

By default, this command saves a plot of average performance throughout training in the figs/ folder. Other metrics can be plotted using the --metric option. For more information on the inputs accepted by plot, use the --help option.

Owner
Jimmy Queeney
Jimmy Queeney
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
Deep Learning for Time Series Classification

Deep Learning for Time Series Classification This is the companion repository for our paper titled "Deep learning for time series classification: a re

Hassan ISMAIL FAWAZ 1.2k Jan 02, 2023
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022