Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Related tags

Deep Learninggeppo
Overview

Generalized Proximal Policy Optimization with Sample Reuse

This repository is the official implementation of the reinforcement learning algorithm Generalized Proximal Policy Optimization with Sample Reuse (GePPO), which was introduced in the NeurIPS 2021 paper with the same name.

GePPO improves the sample efficiency of the popular on-policy algorithm PPO through principled sample reuse, while still retaining PPO's approximate policy improvement guarantees. GePPO is theoretically supported by a generalized policy improvement lower bound that can be approximated using data from all recent policies.

Requirements

The source code requires the following packages to be installed (we have included the version used to produce the results found in the paper in parentheses):

  • python (3.7.7)
  • gurobi (9.0.2)
  • gym (0.17.1)
  • matplotlib (3.1.3)
  • mujoco-py (1.50.1.68)
  • numpy (1.18.1)
  • scipy (1.4.1)
  • seaborn (0.10.1)
  • tensorflow (2.1.0)

See the file environment.yml for the conda environment used to run our experiments, which can be built with conda using the command conda env create.

The MuJoCo environments used in our experiments require the MuJoCo physics engine and a MuJoCo license. Please see the MuJoCo website for more information on downloading MuJoCo and obtaining a license.

Our implementation of GePPO uses Gurobi to determine the optimal policy weights used in the algorithm, which requires a Gurobi license. Please see the Gurobi website for more information on downloading Gurobi and obtaining a license. Alternatively, GePPO can be run without Gurobi by using uniform policy weights with the --uniform option.

Training

Simulations can be run by calling run on the command line. For example, we can run simulations on the HalfCheetah-v3 environment with PPO and GePPO as follows:

python -m geppo.run --env_name HalfCheetah-v3 --alg_name ppo
python -m geppo.run --env_name HalfCheetah-v3 --alg_name geppo

By default, all algorithm hyperparameters are set to the default values used in the paper. Hyperparameters can be changed to non-default values by using the relevant option on the command line. For more information on the inputs accepted by run, use the --help option.

The results of simulations are saved in the logs/ folder upon completion.

Evaluation

The results of simulations saved in the logs/ folder can be visualized by calling plot on the command line:

python -m geppo.plot --ppo_file <filename> --geppo_file <filename>

By default, this command saves a plot of average performance throughout training in the figs/ folder. Other metrics can be plotted using the --metric option. For more information on the inputs accepted by plot, use the --help option.

Owner
Jimmy Queeney
Jimmy Queeney
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors.

Here is the diagnostic tool for BMVC 2021 paper Diagnosing Errors in Video Relation Detectors. We provide a tiny ground truth file demo_gt.json, and t

Shuo Chen 3 Dec 26, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022