HINet: Half Instance Normalization Network for Image Restoration

Related tags

Deep LearningHINet
Overview

PWC PWC PWC PWC PWC PWC PWC

HINet: Half Instance Normalization Network for Image Restoration

Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen

Paper: https://arxiv.org/abs/2105.06086

In this paper, we explore the role of Instance Normalization in low-level vision tasks. Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to boost the performance of image restoration networks. Based on HIN Block, we design a simple and powerful multi-stage network named HINet, which consists of two subnetworks. With the help of HIN Block, HINet surpasses the state-of-the-art (SOTA) on various image restoration tasks. For image denoising, we exceed it 0.11dB and 0.28 dB in PSNR on SIDD dataset, with only 7.5% and 30% of its multiplier-accumulator operations (MACs), 6.8 times and 2.9 times speedup respectively. For image deblurring, we get comparable performance with 22.5% of its MACs and 3.3 times speedup on REDS and GoPro datasets. For image deraining, we exceed it by 0.3 dB in PSNR on the average result of multiple datasets with 1.4 times speedup. With HINet, we won 1st place on the NTIRE 2021 Image Deblurring Challenge - Track2. JPEG Artifacts, with a PSNR of 29.70.

Network Architecture

arch

Installation

This implementation based on BasicSR which is a open source toolbox for image/video restoration tasks.

python 3.6.9
pytorch 1.5.1
cuda 10.1
git clone https://github.com/megvii-model/HINet
cd HINet
pip install -r requirements.txt
python setup.py develop --no_cuda_ext

Image Restoration Tasks


Image denoise, deblur, derain.

Image Denoise - SIDD dataset (Coming soon)
Image Deblur - GoPro dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/GoPro

    • download the train set in ./datasets/GoPro/train and test set in ./datasets/GoPro/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/GoPro/
      ./datasets/GoPro/train/
      ./datasets/GoPro/train/input/
      ./datasets/GoPro/train/target/
      ./datasets/GoPro/test/
      ./datasets/GoPro/test/input/
      ./datasets/GoPro/test/target/
    • python scripts/data_preparation/gopro.py

      • crop the train image pairs to 512x512 patches.
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-GoPro.pth
    • python basicsr/test.py -opt options/test/REDS/HINet-GoPro.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/GoPro/HINet.yml --launcher pytorch
Image Deblur - REDS dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/REDS

    • download the train / val set from train_blur, train_sharp, val_blur, val_sharp to ./datasets/REDS/ and unzip them.

    • it should be like

      ./datasets/
      ./datasets/REDS/
      ./datasets/REDS/val/
      ./datasets/REDS/val/val_blur_jpeg/
      ./datasets/REDS/val/val_sharp/
      ./datasets/REDS/train/
      ./datasets/REDS/train/train_blur_jpeg/
      ./datasets/REDS/train/train_sharp/
      
    • python scripts/data_preparation/reds.py

      • flatten the folders and extract 300 validation images.
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-REDS.pth
    • python basicsr/test.py -opt options/test/REDS/HINet-REDS.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/REDS/HINet.yml --launcher pytorch
Image Derain - Rain13k dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/Rain13k

    • download the train set and test set (refer to MPRNet)

    • it should be like

      ./datasets/
      ./datasets/Rain13k/
      ./datasets/Rain13k/train/
      ./datasets/Rain13k/train/input/
      ./datasets/Rain13k/train/target/
      ./datasets/Rain13k/test/
      ./datasets/Rain13k/test/Test100/
      ./datasets/Rain13k/test/Rain100H/
      ./datasets/Rain13k/test/Rain100L/
      ./datasets/Rain13k/test/Test2800/
      ./datasets/Rain13k/test/Test1200/
      
  • eval

    • download pretrained model to ./experiments/pretrained_models/HINet-Rain13k.pth

    • For Test100:

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test100.yml
    • For Rain100H

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Rain100H.yml
    • For Rain100L

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Rain100L.yml
    • For Test2800

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test2800.yml
    • For Test1200

      • python basicsr/test.py -opt options/test/Rain13k/HINet-Test1200.yml
  • train

    • python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train_rain.py -opt options/train/Rain13k/HINet.yml --launcher pytorch

Results


Some of the following results are higher than the original paper as we optimized some hyper-parameters.

NTIRE2021 Deblur Track2 ResultSIDD ResultGoPro Result
REDDS ResultRain13k Result

Citations

If HINet helps your research or work, please consider citing HINet.

@inproceedings{chen2021hinet,
  title={HINet: Half Instance Normalization Network for Image Restoration},
  author={Liangyu Chen and Xin Lu and Jie Zhang and Xiaojie Chu and Chengpeng Chen},
  booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected] .

TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
The repo for the paper "I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection".

I3CL: Intra- and Inter-Instance Collaborative Learning for Arbitrary-shaped Scene Text Detection Updates | Introduction | Results | Usage | Citation |

33 Jan 05, 2023
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Official PyTorch implementation of "BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation" (NeurIPS 2021)

BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation Official PyTorch implementation of the NeurIPS 2021 paper Mingcong Liu, Qiang

onion 462 Dec 29, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022