The challenge for Quantum Coalition Hackathon 2021

Overview

Qchack 2021 Google Challenge

This is a challenge for the brave 2021 qchack.io participants.

Instructions

Hello, intrepid qchacker, welcome to the <G|oogl|e> challenge!

Background

In quantum computing, the gate model plays a central role. Today most quantum algorithm designers express quantum algorithms via things called quantum gates. Quantum hardware, like the Google Sycamore device can execute only certain types of gates, and only one and two-qubit gates. However, this means that multi-qubit operations need to be compiled down to the supported gates. Also, another complication is that devices have restrictions - not all qubits are connected to each other!

Challenge

Your challenge is to compile an n-qubit (1<=n<=8) unitary matrix ( unitary matrix) to a list of operations that can run on the Google Sycamore device - i.e. to implement this method:

from typing import List, Tuple

import numpy as np
import cirq

def matrix_to_sycamore_operations(target_qubits: List[cirq.GridQubit], matrix: np.ndarray) -> Tuple[cirq.OP_TREE, List[cirq.GridQubit]]:
    """ A method to convert a unitary matrix to a list of Sycamore operations. 
    
    This method will return a list of `cirq.Operation`s using the qubits and (optionally) ancilla 
    qubits to implement the unitary matrix `matrix` on the target qubits `qubits`. 
    The operations are also supported by `cirq.google.gate_sets.SYC_GATESET`. 

    Args:
        target_qubits: list of qubits the returned operations will act on. The qubit order defined by the list 
            is assumed to be used by the operations to implement `matrix`.
        matrix: a matrix that is guaranteed to be unitary and of size (2**len(qs), 2**len(qs)).
    Returns: 
        A tuple of operations and ancilla qubits allocated. 
            Operations: In case the matrix is supported, a list of operations `ops` is returned. 
                `ops` acts on `qs` qubits and for which `cirq.unitary(ops)` is equal to `matrix` up 
                 to certain tolerance. In case the matrix is not supported, it might return NotImplemented to 
                 reduce the noise in the judge output.
            Ancilla qubits: In case ancilla qubits are allocated a list of ancilla qubits. Otherwise 
                an empty list.
        .   
    """
    return NotImplemented, []

Input unitaries

Your method will be tested against different inputs, which will be 1-8 qubit input unitaries. Some of the unitaries will have structure that you should leverage to create efficient circuits, this can give you more points! Some of them will be completely random.

Output

Your method will return a two-tuple of two things:

  • list of operations - these operations using the Sycamore gateset (see more details in additional information) will be used to create a cirq.Circuit and we'll take the unitary matrix of it to compare it with the input as explained below.
  • ancilla qubits (advanced) - list of ancilla qubits, e.g. [] means you didn't allocate any ancillae, [cirq.GridQubit(2,3)] means you allocated a single ancilla qubit

Ancilla qubits

Some unitaries will benefit from using ancilla qubits. You can allocate ancilla qubits, as long as the total number of qubits is less than or equal to 10 qubits.

The expected unitary is the tensor product of the input matrix and the identity on the ancilla qubits:

expected_unitary = cirq.kron(input, np.eye(2 ** len(ancillae)))

Where input is the original input.

Qubit order

Qubit ordering is determined by the passed in target_qubits list and the order of the returned ancilla qubits. This is passed in to the circuit.unitary() method, i.e. given your response solution we will evaluate the unitary matrix of your operation the following way:

response, ancillae = solution.matrix_to_sycamore_operations(target_qubits, input_unitary)
response_unitary = response_circuit.unitary(
                        qubit_order=qs + ancillae, 
                        qubits_that_should_be_present=qs + ancillae
                   )

Recall why this matters: for example, on two qubits, if the order is the regular big endian, the CNOT unitary is:

>>> a,b = cirq.LineQubit.range(2)
>>> cirq.Circuit(cirq.CNOT(a,b)).unitary(qubit_order=[a,b], qubits_that_should_be_present=[a,b])
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
       [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
       [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
       [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j]])
>>> cirq.Circuit(cirq.CNOT(a,b)).unitary(qubit_order=[b,a], qubits_that_should_be_present=[a,b])
array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
       [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
       [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
       [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])

Scoring

We'll score each input separately, and sum them up.

Scoring per input matrix:

  • you code MUST use the qubits that were passed in
  • your code MUST execute otherwise no points are given
  • you MUST provide 1 and 2-qubit gates otherwise no points are given
  • the diamond norm distance of your response MUST be close (max 1e-4) to the input unitary
  • the less two-qubit operations you return the more points you get
  • you get extra points if the operations can run on Sycamore

Some additional information

Google's Sycamore device is a 54 qubit quantum chip:

>>> print(cirq.google.Sycamore)
                                             (0, 5)───(0, 6)
                                             │        │
                                             │        │
                                    (1, 4)───(1, 5)───(1, 6)───(1, 7)
                                    │        │        │        │
                                    │        │        │        │
                           (2, 3)───(2, 4)───(2, 5)───(2, 6)───(2, 7)───(2, 8)
                           │        │        │        │        │        │
                           │        │        │        │        │        │
                  (3, 2)───(3, 3)───(3, 4)───(3, 5)───(3, 6)───(3, 7)───(3, 8)───(3, 9)
                  │        │        │        │        │        │        │        │
                  │        │        │        │        │        │        │        │
         (4, 1)───(4, 2)───(4, 3)───(4, 4)───(4, 5)───(4, 6)───(4, 7)───(4, 8)───(4, 9)
         │        │        │        │        │        │        │        │
         │        │        │        │        │        │        │        │
(5, 0)───(5, 1)───(5, 2)───(5, 3)───(5, 4)───(5, 5)───(5, 6)───(5, 7)───(5, 8)
         │        │        │        │        │        │        │
         │        │        │        │        │        │        │
         (6, 1)───(6, 2)───(6, 3)───(6, 4)───(6, 5)───(6, 6)───(6, 7)
                  │        │        │        │        │
                  │        │        │        │        │
                  (7, 2)───(7, 3)───(7, 4)───(7, 5)───(7, 6)
                           │        │        │
                           │        │        │
                           (8, 3)───(8, 4)───(8, 5)
                                    │
                                    │
                                    (9, 4)

There are only a limited number of gates that this device supports.

Suppose we pick these two adjacent qubits:

>>> a = cirq.GridQubit(3,5)
>>> b = cirq.GridQubit(3,6)

The supported gates on these qubits will be:

  • 1 qubit gates:
    • [X/Z/Y]PowGate: cirq.google.Sycamore.validate_operation(cirq.X(a))
    • PhasedXZGate: cirq.google.Sycamore.validate_operation(cirq.PhasedXZGate(x_exponent=1, z_exponent=1, axis_phase_exponent=1.2)(a))
  • 2 qubit gates:
    • sqrt of ISWAP: cirq.google.Sycamore.validate_operation(cirq.ISWAP(a,b)**0.5)
    • SYC gate: cirq.google.Sycamore.validate_operation(cirq.SYC(a,b))

A Hint: before you jump in trying to figure out compilation to these gates, you might want to check our Cirq intro workshop or the Cirq reference for easier ways.

How to participate?

  1. You will need an email address that you registered with for qchack. Only a single submission (the last one takes precedence) is accepted per email address!
  2. To get started, clone this repo:
git clone github.com/quantumlib/qchack-2021-challenge
  1. Write your code! You can work with a set of automated tests locally to check your progress. See Testing for details!
  2. When you are ready to submit, publish your code to a public Github/Gitlab/Bitbucket repo
  3. Fill out this Google form with your repository URL.

GOOD LUCK from the Google Quantum AI qchack.io team!

Legal eligibility for prizes

Persons who are (1) residents of US embargoed countries, (2) ordinarily resident in US embargoed countries, or (3) otherwise prohibited by applicable export controls and sanctions programs may not receive prizes in this contest. We will also not be able to give out prizes for winners from the following countries: Russia, Ukraine, Kazakhstan, Belarus and Brazil.

How to ensure that my submission is valid?

Do NOTs

The solution folder needs to stay the same. Not following these instructions will result in a erroneous submission.

  • do not change solution folder name
  • do not change the function name matrix_to_sycamore_operations
  • do not change the function signature

Dos

Ensure that the judge test in its current form runs on your code. That will ensure that the submission process will work!

Dependencies

The judge will have the dependencies installed during submission in judge/requirements.txt. If your project requires additional dependencies, only add the additional dependencies to solution/requirements.txt.
If your project requires no additional dependencies, then just leave the solution/requirements.txt empty.

Testing, scoring

You can run the judge yourself! This is provided so that you can track your progress. However, note that your final score might be different as we will use different randomization strategies and unitaries to test your code. Scoring logic however will be similar to score_input in judge/judge_lib.py. We recommend checking out the simpler test cases first to ensure getting some points!

Setup

Python3.8 is required, and the use of a virtual environment is recommended.

pip install -r judge/requirements.txt

Running the judge

Run the following to run all the tests once and get your full score:

pytest judge/judge_test.py -rP

When you run this the first time, you should see something like this:

...
------------------------------------------------------------------------------------------------- Captured stdout call -------------------------------------------------------------------------------------------------
/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ [ 8-qubit incrementer ] /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\

executing method (0 pts): ✔ [0 pts]
2+ qubit gates (0 pts): [skipped] 
Close in trace distance (256 pts): [skipped] 
Circuit structure (512 pts): [skipped] 
Valid for Sycamore device (256 pts): [skipped] 
Result: 0.00 / 1024
----------------------------------------------------------------------------------------------- Captured stdout teardown -----------------------------------------------------------------------------------------------

====================================================================================================
Total score: 0.00 / 8616 points!

================================================================================================== 49 passed in 1.71s ==================================================================================================

Run the following if you want to run a particular test (note that the total score is only the score of the executed tests!):

pytest judge/judge_test.py -rP -k single_qubit

Run this to run all the tests in watch mode (anything you change triggers a rebuild):

ptw -- judge/judge_test.py -rP

Support

If you run into technical issues, feel free to file a ticket on this Github repo and or ping us on the Discord channel throughout the Hackathon.

Owner
quantumlib
Code for the Quantum World
quantumlib
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
🔮 A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
This is the official implementation of our proposed SwinMR

SwinMR This is the official implementation of our proposed SwinMR: Swin Transformer for Fast MRI Please cite: @article{huang2022swin, title={Swi

A Yang Lab (led by Dr Guang Yang) 27 Nov 17, 2022
A pytorch reprelication of the model-based reinforcement learning algorithm MBPO

Overview This is a re-implementation of the model-based RL algorithm MBPO in pytorch as described in the following paper: When to Trust Your Model: Mo

Xingyu Lin 93 Jan 05, 2023
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022