PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Overview

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021)

This repository is the official implementation of Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks .

PWC

PWC

Contents

This repository contains the following PyTorch code:

  • Implementation of U-TAE spatio-temporal encoding architecture for satellite image time series UTAE
  • Implementation of Parcels-as-Points (PaPs) module for panoptic segmentation of agricultural parcels PaPs
  • Code for reproduction of the paper's results for panoptic and semantic segmentation.

Results

Our model achieves the following performance on :

PASTIS - Panoptic segmentation

Our spatio-temporal encoder U-TAE combined with our PaPs instance segmentation module achieves 40.4 Panoptic Quality (PQ) on PASTIS for panoptic segmentation. When replacing U-TAE with a convolutional LSTM the performance drops to 33.4 PQ.

Model name SQ RQ PQ
U-TAE + PaPs (ours) 81.3 49.2 40.4
UConvLSTM+PaPs 80.9 40.8 33.4

PASTIS - Semantic segmentation

Our spatio-temporal encoder U-TAE yields a semantic segmentation score of 63.1 mIoU on PASTIS, achieving an improvement of approximately 5 points compared to the best existing methods that we re-implemented (Unet-3d, Unet+ConvLSTM and Feature Pyramid+Unet). See the paper for more details.

Model name #Params OA mIoU
U-TAE (ours) 1.1M 83.2% 63.1%
Unet-3d 1.6M 81.3% 58.4%
Unet-ConvLSTM 1.5M 82.1% 57.8%
FPN-ConvLSTM 1.3M 81.6% 57.1%

Requirements

PASTIS Dataset download

The Dataset is freely available for download here.

Python requirements

To install requirements:

pip install -r requirements.txt

(torch_scatter is required for the panoptic experiments. Installing this library requires a little more effort, see the official repo)

Inference with pre-trained models

Panoptic segmentation

Pre-trained weights of U-TAE+Paps are available here

To perform inference of the pre-trained model on the test set of PASTIS run:

python test_panoptic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER

Semantic segmentation

Pre-trained weights of U-TAE are available here

To perform inference of the pre-trained model on the test set of PASTIS run:

python test_semantic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER

Training models from scratch

Panoptic segmentation

To reproduce the main result for panoptic segmentation (with U-TAE+PaPs) run the following :

python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR

Options are also provided in train_panoptic.py to reproduce the other results of Table 2:

python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_NoCNN --no_mask_conv
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --backbone uconvlstm
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_shape24 --shape_size 24

Note: By default this script runs the 5 folds of the cross validation, which can be quite long (~12 hours per fold on a Tesla V100). Use the fold argument to execute one of the 5 folds only (e.g. for the 3rd fold : python train_panoptic.py --fold 3 --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR).

Semantic segmentation

To reproduce results for semantic segmentation (with U-TAE) run the following :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR

And in order to obtain the results of the competing methods presented in Table 1 :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UNET3d --model unet3d
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --model uconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_FPN --model fpn
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BUConvLSTM --model buconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_COnvGRU --model convgru
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_ConvLSTM --model convlstm

Finally, to reproduce the ablation study presented in Table 1 :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_MeanAttention --agg_mode att_mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SkipMeanConv --agg_mode mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BatchNorm --encoder_norm batch
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SingleDate --mono_date "08-01-2019"

Reference

Please include a citation to the following paper if you use the U-TAE, PaPs or the PASTIS benchmark.

@article{garnot2021panoptic,
  title={Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks},
  author={Sainte Fare Garnot, Vivien  and Landrieu, Loic },
  journal={ICCV},
  year={2021}
}

Credits

  • This work was partly supported by ASP, the French Payment Agency.

  • Code for the presented methods and dataset is original code by Vivien Sainte Fare Garnot, competing methods and some utility functions were adapted from existing repositories which are credited in the corresponding files.

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Transferable Unrestricted Attacks, which won 1st place in CVPR’21 Security AI Challenger: Unrestricted Adversarial Attacks on ImageNet.

Transferable Unrestricted Adversarial Examples This is the PyTorch implementation of the Arxiv paper: Towards Transferable Unrestricted Adversarial Ex

equation 16 Dec 29, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Source code for our paper "Empathetic Response Generation with State Management"

Source code for our paper "Empathetic Response Generation with State Management" this repository is maintained by both Jun Gao and Yuhan Liu Model Ove

Yuhan Liu 3 Oct 08, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022