PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Overview

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021)

This repository is the official implementation of Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks .

PWC

PWC

Contents

This repository contains the following PyTorch code:

  • Implementation of U-TAE spatio-temporal encoding architecture for satellite image time series UTAE
  • Implementation of Parcels-as-Points (PaPs) module for panoptic segmentation of agricultural parcels PaPs
  • Code for reproduction of the paper's results for panoptic and semantic segmentation.

Results

Our model achieves the following performance on :

PASTIS - Panoptic segmentation

Our spatio-temporal encoder U-TAE combined with our PaPs instance segmentation module achieves 40.4 Panoptic Quality (PQ) on PASTIS for panoptic segmentation. When replacing U-TAE with a convolutional LSTM the performance drops to 33.4 PQ.

Model name SQ RQ PQ
U-TAE + PaPs (ours) 81.3 49.2 40.4
UConvLSTM+PaPs 80.9 40.8 33.4

PASTIS - Semantic segmentation

Our spatio-temporal encoder U-TAE yields a semantic segmentation score of 63.1 mIoU on PASTIS, achieving an improvement of approximately 5 points compared to the best existing methods that we re-implemented (Unet-3d, Unet+ConvLSTM and Feature Pyramid+Unet). See the paper for more details.

Model name #Params OA mIoU
U-TAE (ours) 1.1M 83.2% 63.1%
Unet-3d 1.6M 81.3% 58.4%
Unet-ConvLSTM 1.5M 82.1% 57.8%
FPN-ConvLSTM 1.3M 81.6% 57.1%

Requirements

PASTIS Dataset download

The Dataset is freely available for download here.

Python requirements

To install requirements:

pip install -r requirements.txt

(torch_scatter is required for the panoptic experiments. Installing this library requires a little more effort, see the official repo)

Inference with pre-trained models

Panoptic segmentation

Pre-trained weights of U-TAE+Paps are available here

To perform inference of the pre-trained model on the test set of PASTIS run:

python test_panoptic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER

Semantic segmentation

Pre-trained weights of U-TAE are available here

To perform inference of the pre-trained model on the test set of PASTIS run:

python test_semantic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER

Training models from scratch

Panoptic segmentation

To reproduce the main result for panoptic segmentation (with U-TAE+PaPs) run the following :

python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR

Options are also provided in train_panoptic.py to reproduce the other results of Table 2:

python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_NoCNN --no_mask_conv
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --backbone uconvlstm
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_shape24 --shape_size 24

Note: By default this script runs the 5 folds of the cross validation, which can be quite long (~12 hours per fold on a Tesla V100). Use the fold argument to execute one of the 5 folds only (e.g. for the 3rd fold : python train_panoptic.py --fold 3 --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR).

Semantic segmentation

To reproduce results for semantic segmentation (with U-TAE) run the following :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR

And in order to obtain the results of the competing methods presented in Table 1 :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UNET3d --model unet3d
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --model uconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_FPN --model fpn
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BUConvLSTM --model buconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_COnvGRU --model convgru
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_ConvLSTM --model convlstm

Finally, to reproduce the ablation study presented in Table 1 :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_MeanAttention --agg_mode att_mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SkipMeanConv --agg_mode mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BatchNorm --encoder_norm batch
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SingleDate --mono_date "08-01-2019"

Reference

Please include a citation to the following paper if you use the U-TAE, PaPs or the PASTIS benchmark.

@article{garnot2021panoptic,
  title={Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks},
  author={Sainte Fare Garnot, Vivien  and Landrieu, Loic },
  journal={ICCV},
  year={2021}
}

Credits

  • This work was partly supported by ASP, the French Payment Agency.

  • Code for the presented methods and dataset is original code by Vivien Sainte Fare Garnot, competing methods and some utility functions were adapted from existing repositories which are credited in the corresponding files.

Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 341 Dec 29, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021