PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Overview

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021)

This repository is the official implementation of Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks .

PWC

PWC

Contents

This repository contains the following PyTorch code:

  • Implementation of U-TAE spatio-temporal encoding architecture for satellite image time series UTAE
  • Implementation of Parcels-as-Points (PaPs) module for panoptic segmentation of agricultural parcels PaPs
  • Code for reproduction of the paper's results for panoptic and semantic segmentation.

Results

Our model achieves the following performance on :

PASTIS - Panoptic segmentation

Our spatio-temporal encoder U-TAE combined with our PaPs instance segmentation module achieves 40.4 Panoptic Quality (PQ) on PASTIS for panoptic segmentation. When replacing U-TAE with a convolutional LSTM the performance drops to 33.4 PQ.

Model name SQ RQ PQ
U-TAE + PaPs (ours) 81.3 49.2 40.4
UConvLSTM+PaPs 80.9 40.8 33.4

PASTIS - Semantic segmentation

Our spatio-temporal encoder U-TAE yields a semantic segmentation score of 63.1 mIoU on PASTIS, achieving an improvement of approximately 5 points compared to the best existing methods that we re-implemented (Unet-3d, Unet+ConvLSTM and Feature Pyramid+Unet). See the paper for more details.

Model name #Params OA mIoU
U-TAE (ours) 1.1M 83.2% 63.1%
Unet-3d 1.6M 81.3% 58.4%
Unet-ConvLSTM 1.5M 82.1% 57.8%
FPN-ConvLSTM 1.3M 81.6% 57.1%

Requirements

PASTIS Dataset download

The Dataset is freely available for download here.

Python requirements

To install requirements:

pip install -r requirements.txt

(torch_scatter is required for the panoptic experiments. Installing this library requires a little more effort, see the official repo)

Inference with pre-trained models

Panoptic segmentation

Pre-trained weights of U-TAE+Paps are available here

To perform inference of the pre-trained model on the test set of PASTIS run:

python test_panoptic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER

Semantic segmentation

Pre-trained weights of U-TAE are available here

To perform inference of the pre-trained model on the test set of PASTIS run:

python test_semantic.py --dataset_folder PATH_TO_DATASET --weight_folder PATH_TO_WEIGHT_FOLDER

Training models from scratch

Panoptic segmentation

To reproduce the main result for panoptic segmentation (with U-TAE+PaPs) run the following :

python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR

Options are also provided in train_panoptic.py to reproduce the other results of Table 2:

python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_NoCNN --no_mask_conv
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --backbone uconvlstm
python train_panoptic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_shape24 --shape_size 24

Note: By default this script runs the 5 folds of the cross validation, which can be quite long (~12 hours per fold on a Tesla V100). Use the fold argument to execute one of the 5 folds only (e.g. for the 3rd fold : python train_panoptic.py --fold 3 --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR).

Semantic segmentation

To reproduce results for semantic segmentation (with U-TAE) run the following :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR

And in order to obtain the results of the competing methods presented in Table 1 :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UNET3d --model unet3d
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_UConvLSTM --model uconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_FPN --model fpn
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BUConvLSTM --model buconvlstm
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_COnvGRU --model convgru
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_ConvLSTM --model convlstm

Finally, to reproduce the ablation study presented in Table 1 :

python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_MeanAttention --agg_mode att_mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SkipMeanConv --agg_mode mean
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_BatchNorm --encoder_norm batch
python train_semantic.py --dataset_folder PATH_TO_DATASET --res_dir OUT_DIR_SingleDate --mono_date "08-01-2019"

Reference

Please include a citation to the following paper if you use the U-TAE, PaPs or the PASTIS benchmark.

@article{garnot2021panoptic,
  title={Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks},
  author={Sainte Fare Garnot, Vivien  and Landrieu, Loic },
  journal={ICCV},
  year={2021}
}

Credits

  • This work was partly supported by ASP, the French Payment Agency.

  • Code for the presented methods and dataset is original code by Vivien Sainte Fare Garnot, competing methods and some utility functions were adapted from existing repositories which are credited in the corresponding files.

Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022