Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Related tags

Deep Learningl2e
Overview

Learning to Execute (L2E)

Official code base for completely reproducing all results reported in

I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Installation

Initialize submodules:

git submodule init
git submodule update

Install rai-python

For rai-python, it is recommended to use this docker image.

If you want to install rai-python manually, follow instructions here. You will also need to install PhysX, ideally following these instructions.

Install gym-physx

Modify the path to rai-python/rai/rai/ry in gym-physx/gym_physx/envs/physx_pushing_env.py depending on your installation. Then install gym-physx using pip:

cd gym-physx
pip install .

Install gym-obstacles

In case you also want to run the 2D maze example with moving obstacles as introduced in section A.3, install gym-obstacles:

cd gym-obstacles
pip install .

Install our fork of stable-baselines3

cd stable-baselines3
pip install .

Reproduce figures

l2e/l2e/ contains code to reproduce the reults in the paper.

Figures consist of multiple experiments and are defined in plot_results.json.

Experiments are defined in config_$EXPERIMENT.json.

Intermediate and final results are saved to $scratch_root/$EXPERIMENT/ (configure $scratch_root in each config_$EXPERIMENT.json as well as in plot_results.json).

Step-by-step instructions to reproduce figures:

  1. Depending on experiment, use the following train scripts:

    1. For the RL runs ($EXPERIMENT=l2e* and $EXPERIMENT=her*)

      ./train.sh $EXPERIMENT
    2. For the Inverse Model runs ($EXPERIMENT=im_plan_basic and $EXPERIMENT=im_plan_obstacle_training)

      First collect data:

      ./imitation_data.sh $EXPERIMENT

      Then train inverse model

      ./imitation_learning.sh $EXPERIMENT
    3. For the Direct Execution runs ($EXPERIMENT=plan_basic and $EXPERIMENT=plan_obstacle)

      No training stage is needed here.

    ./train.sh $EXPERIMENT will launch multiple screens with multiple independent runs of $EXPERIMENT. The number of runs is configured using $AGENTS_MIN and $AGENTS_MAX in config_$EXPERIMENT.json.

    ./imitation_data.sh will launch $n_data_collect_workers workers for collecting data, and ./imitation_learning.sh will launch $n_training_workers runs training models independently.

  2. Evaluate results

    ./evaluate.sh $EXPERIMENT

    python evaluate.py $EXPERIMENT will launch multiple screens, one for each agent that was trained in step 1. python evaluate.py $EXPERIMENT will automatically scan for new training output, and only evaluate model checkpoints that haven't been evaluated yet.

  3. Plot results

    After all experiments are finished, create plots using

    python plot_results.py

    This will create all data figures contained in the paper. Figures are saved in l2e/figs/ (configure in plot_results.json)

Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022