Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Overview

Authors:

Code for sound field predictions in domains with Neumann and impedance boundaries. Used for generating results from the paper "Physics-informed neural networks for 1D sound field predictions with parameterized sources and impedance boundaries" by N. Borrel-Jensen, A. P. Engsig-Karup, and C. Jeong.

Run

Train

Run

python3 main_train.py --path_settings="path/to/script.json"

Scripts for setting up models with Neumann, frequency-independent and dependent boundaries can be found in scripts/settings (see JSON settings).

Evaluate

Run

python3 main_evaluate.py

The settings are

do_animations = do_side_by_side_plot = ">
id_dir = <unique id>
settings_filename = 'settings.json'
base_dir = "path/to/base/dir"

do_plots_for_paper = <bool>
do_animations = <bool>
do_side_by_side_plot = <bool>

The id_dir corresponds to the output directory generated after training, settings_filename is the name of the settings file used for training (located inside the id_dir directory), base_dir is the path to the base directory (see Input/output directory structure).

Evaluate model execution time

To evaluate the execution time of the surrogate model, run

python3 main_evaluate_timings.py --path_settings="path/to/script.json" --trained_model_tag="trained-model-dir"

The trained_model_tag is the directory with the trained model weights trained using the scripts located at the path given in path_settings.

Settings

Input/output directory structure

The input data should be located in a specific relative directory structure as (data used for the paper can be downloaded here)

base_path/
    trained_models/
        trained_model_tag/
            checkpoint
            cp.ckpt.data-00000-of-00001
            cp.ckpt.index
    training_data/
        freq_dep_1D_2000.00Hz_sigma0.2_c1_d0.02_srcs3.hdf5
        ...
        freq_indep_1D_2000.00Hz_sigma0.2_c1_xi5.83_srcs3.hdf5
        ...
        neumann_1D_2000.00Hz_sigma0.2_c1_srcs3.hdf5
        ...

The reference data are located inside the training_data/ directory generated, where the data for impedance boundaries are generated using our SEM simulator, and for Neumann boundaries, the Python script main_generate_analytical_data.py was used.

Output result data are located inside the results folder

base_path/
    results/
        id_folder/
            figs/
            models/
                LossType.PINN/
                    checkpoint
                    cp.ckpt.data-00000-of-00001
                    cp.ckpt.index
            settings.json

The settings.json file is identical to the settings file used for training indicated by the --path_settings argument. The directory LossType.PINN contains the trained model weights.

JSON settings

The script scripts/settings/neumann.json was used for training the Neumann model from the paper

{
    "id": "neumann_srcs3_sine_3_256_7sources_loss02",
    "base_dir": "../data/pinn",
    
    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 25000,
    "stop_loss_value": 0.0002,
    
    "boundary_type": "NEUMANN",
    "data_filename": "neumann_1D_2000.00Hz_sigma0.2_c1_srcs7.hdf5",
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,

    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1
    },

    "verbose_out": false,
    "show_plots": false
}

The script scripts/settings/freq_indep.json was used for training the Neumann model from the paper

{
    "id": "freq_indep_sine_3_256_7sources_loss02",
    "base_dir": "../data/pinn",

    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 25000,
    "stop_loss_value": 0.0002,
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "boundary_type": "IMPEDANCE_FREQ_INDEP",
    "data_filename": "freq_indep_1D_2000.00Hz_sigma0.2_c1_xi5.83_srcs7.hdf5",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "impedance_data": {
        "__comment1__": "xi is the acoustic impedance ONLY for freq. indep. boundaries",
        "xi": 5.83
    },

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,
    
    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1
    },

    "verbose_out": false,
    "show_plots": false
}

The script scripts/settings/freq_dep.json was used for training the Neumann model from the paper

{
    "id": "freq_dep_sine_3_256_7sources_d01",
    "base_dir": "../data/pinn",

    "c": 1,
    "c_phys": 343,
    "___COMMENT_fmax___": "2000Hz*c/343 = 5.8309 for c=1, =23.3236 for c=4",
    "fmax": 5.8309,

    "tmax": 4,
    "xmin": -1,
    "xmax": 1,
    "source_pos": [-0.3,-0.2,-0.1,0.0,0.1,0.2,0.3],
    
    "sigma0": 0.2,
    "rho": 1.2,
    "ppw": 5,

    "epochs": 50000,
    "stop_loss_value": 0.0002,

    "do_transfer_learning": false,

    "boundary_type": "IMPEDANCE_FREQ_DEP",
    "data_filename": "freq_dep_1D_2000.00Hz_sigma0.2_c1_d0.10_srcs7.hdf5",
    
    "batch_size": 512,
    "learning_rate": 0.0001,
    "optimizer": "adam",

    "__comment0__": "NN setting for the PDE",
    "activation": "sin",
    "num_layers": 3,
    "num_neurons": 256,

    "__comment1__": "NN setting for the auxillary differential ODE",
    "activation_ade": "tanh",
    "num_layers_ade": 3,
    "num_neurons_ade": 20,

    "impedance_data": {
        "d": 0.1,
        "type": "IMPEDANCE_FREQ_DEP",
        "lambdas": [7.1109025021758407,205.64002739443146],
        "alpha": [6.1969460587749818],
        "beta": [-15.797795759219973],
        "Yinf": 0.76935257750377573,
        "A": [-7.7594660571346719,0.0096108036858666163],
        "B": [-0.016951521199665469],
        "C": [-2.4690553703530442]
      },

    "accumulator_factors": [10.26, 261.37, 45.88, 21.99],

    "ic_points_distr": 0.25,
    "bc_points_distr": 0.45,

    "loss_penalties": {
        "pde":1,
        "ic":20,
        "bc":1,
        "ade":[10,10,10,10]
    },

    "verbose_out": false,
    "show_plots": false
}

HPC (DTU)

The scripts for training the models on the GPULAB clusters at DTU are located at scripts/settings/run_*.sh.

VSCode

Launch scripts for VS Code are located inside .vscode and running the settings script local_train.json in debug mode is done selecting the Python: TRAIN scheme (open pinn-acoustics.code-workspace to enable the workspace).

License

See LICENSE

Owner
DTU Acoustic Technology Group
DTU Acoustic Technology Group
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Abhinav Gupta 1 Nov 19, 2021
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022