Learning Spatio-Temporal Transformer for Visual Tracking

Related tags

Deep LearningStark
Overview

STARK

PWC
PWC
PWC

The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking

Hiring research interns for visual transformer projects: [email protected]

STARK_Framework

Highlights

End-to-End, Post-processing Free

STARK is an end-to-end tracking approach, which directly predicts one accurate bounding box as the tracking result.
Besides, STARK does not use any hyperparameters-sensitive post-processing, leading to stable performances.

Real-Time Speed

STARK-ST50 and STARK-ST101 run at 40FPS and 30FPS respectively on a Tesla V100 GPU.

Strong performance

Tracker LaSOT (AUC) GOT-10K (AO) TrackingNet (AUC)
STARK 67.1 68.8 82.0
TransT 64.9 67.1 81.4
TrDiMP 63.7 67.1 78.4
Siam R-CNN 64.8 64.9 81.2

Purely PyTorch-based Code

STARK is implemented purely based on the PyTorch.

Install the environment

Option1: Use the Anaconda

conda create -n stark python=3.6
conda activate stark
bash install.sh

Option2: Use the docker file

We provide the complete docker at here

Data Preparation

Put the tracking datasets in ./data. It should look like:

${STARK_ROOT}
 -- data
     -- lasot
         |-- airplane
         |-- basketball
         |-- bear
         ...
     -- got10k
         |-- test
         |-- train
         |-- val
     -- coco
         |-- annotations
         |-- images
     -- trackingnet
         |-- TRAIN_0
         |-- TRAIN_1
         ...
         |-- TRAIN_11
         |-- TEST

Run the following command to set paths for this project

python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .

After running this command, you can also modify paths by editing these two files

lib/train/admin/local.py  # paths about training
lib/test/evaluation/local.py  # paths about testing

Train STARK

Training with multiple GPUs using DDP

# STARK-S50
python tracking/train.py --script stark_s --config baseline --save_dir . --mode multiple --nproc_per_node 8  # STARK-S50
# STARK-ST50
python tracking/train.py --script stark_st1 --config baseline --save_dir . --mode multiple --nproc_per_node 8  # STARK-ST50 Stage1
python tracking/train.py --script stark_st2 --config baseline --save_dir . --mode multiple --nproc_per_node 8 --script_prv stark_st1 --config_prv baseline  # STARK-ST50 Stage2
# STARK-ST101
python tracking/train.py --script stark_st1 --config baseline_R101 --save_dir . --mode multiple --nproc_per_node 8  # STARK-ST101 Stage1
python tracking/train.py --script stark_st2 --config baseline_R101 --save_dir . --mode multiple --nproc_per_node 8 --script_prv stark_st1 --config_prv baseline_R101  # STARK-ST101 Stage2

(Optionally) Debugging training with a single GPU

python tracking/train.py --script stark_s --config baseline --save_dir . --mode single

Test and evaluate STARK on benchmarks

  • LaSOT
python tracking/test.py stark_st baseline --dataset lasot --threads 32
python tracking/analysis_results.py # need to modify tracker configs and names
  • GOT10K-test
python tracking/test.py stark_st baseline_got10k_only --dataset got10k_test --threads 32
python lib/test/utils/transform_got10k.py --tracker_name stark_st --cfg_name baseline_got10k_only
  • TrackingNet
python tracking/test.py stark_st baseline --dataset trackingnet --threads 32
python lib/test/utils/transform_trackingnet.py --tracker_name stark_st --cfg_name baseline
  • VOT2020
    Before evaluating "STARK+AR" on VOT2020, please install some extra packages following external/AR/README.md
cd external/vot20/<workspace_dir>
export PYTHONPATH=<path to the stark project>:$PYTHONPATH
bash exp.sh
  • VOT2020-LT
cd external/vot20_lt/<workspace_dir>
export PYTHONPATH=<path to the stark project>:$PYTHONPATH
bash exp.sh

Test FLOPs, Params, and Speed

# Profiling STARK-S50 model
python tracking/profile_model.py --script stark_s --config baseline
# Profiling STARK-ST50 model
python tracking/profile_model.py --script stark_st2 --config baseline
# Profiling STARK-ST101 model
python tracking/profile_model.py --script stark_st2 --config baseline_R101

Model Zoo

The trained models, the training logs, and the raw tracking results are provided in the model zoo

Acknowledgments

Owner
Multimedia Research
Multimedia Research at Microsoft Research Asia
Multimedia Research
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

33 Dec 01, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
COLMAP - Structure-from-Motion and Multi-View Stereo

COLMAP About COLMAP is a general-purpose Structure-from-Motion (SfM) and Multi-View Stereo (MVS) pipeline with a graphical and command-line interface.

4.7k Jan 07, 2023