Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

Overview

CoCa - Pytorch

Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contrastive learning to a conventional encoder / decoder (image to text) transformer, achieving SOTA 91.0% top-1 accuracy on ImageNet with a finetuned encoder.

This repository also chooses to adopt the specific transformer architecture from PaLM, for both the unimodal and multimodal transformers as well as the cross attention blocks (parallel SwiGLU feedforwards)

Yannic Kilcher presentation

Install

$ pip install coca-pytorch

Usage

First install the vit-pytorch for the image encoder, which needs to be pretrained

$ pip install vit-pytorch

Then

import torch

# import vision transformer

from vit_pytorch import ViT
from vit_pytorch.extractor import Extractor

vit = ViT(
    image_size = 256,
    patch_size = 32,
    num_classes = 1000,
    dim = 1024,
    depth = 6,
    heads = 16,
    mlp_dim = 2048
)

# do your vision transformer training

vit = Extractor(vit, return_embeddings_only = True)

# extractor will enable it so the vision transformer returns its embeddings

# import CoCa and instantiate it

from coca_pytorch.coca_pytorch import CoCa

coca = CoCa(
    dim = 512,                     # model dimension
    img_encoder = vit,             # vision transformer - image encoder, returning image embeddings as (batch, seq, dim)
    image_dim = 1024,              # image embedding dimension, if not the same as model dimensions
    num_tokens = 20000,            # number of text tokens
    unimodal_depth = 6,            # depth of the unimodal transformer
    multimodal_depth = 6,          # depth of the multimodal transformer
    dim_head = 64,                 # dimension per attention head
    heads = 8,                     # number of attention heads
    caption_loss_weight = 1.,      # weight on the autoregressive caption loss
    contrastive_loss_weight = 1.,  # weight on the contrastive loss between image and text CLS embeddings
).cuda()

# mock text and images

text = torch.randint(0, 20000, (4, 512)).cuda()
images = torch.randn(4, 3, 256, 256).cuda()

# train by giving CoCa your text and images with `return_loss = True`

loss = coca(
    text = text,
    images = images,
    return_loss = True  # set this to True to get the full caption + contrastive loss
)

loss.backward()

# do the above for as much text and images...
# then you can get the caption logits as so

logits = coca(
    text = text,
    images = images
) # (4, 512, 20000)

# and the CLIP-like text and image embeddings as

text_embeds, image_embeds = coca(
    text = text,
    images = images,
    return_embeddings = True
) # (4, 512), (4, 512)

Citations

@inproceedings{Yu2022CoCaCC,
  title   = {CoCa: Contrastive Captioners are Image-Text Foundation Models},
  author  = {Jiahui Yu and Zirui Wang and Vijay Vasudevan and Legg Yeung and Mojtaba Seyedhosseini and Yonghui Wu},
  year    = {2022}
}
@inproceedings{Chowdhery2022PaLMSL,
    title   = {PaLM: Scaling Language Modeling with Pathways},
    author  = {Aakanksha Chowdhery and Sharan Narang and Jacob Devlin and Maarten Bosma and Gaurav Mishra and Adam Roberts and Paul Barham and Hyung Won Chung and Charles Sutton and Sebastian Gehrmann and Parker Schuh and Kensen Shi and Sasha Tsvyashchenko and Joshua Maynez and Abhishek Rao and Parker Barnes and Yi Tay and Noam M. Shazeer and Vinodkumar Prabhakaran and Emily Reif and Nan Du and Benton C. Hutchinson and Reiner Pope and James Bradbury and Jacob Austin and Michael Isard and Guy Gur-Ari and Pengcheng Yin and Toju Duke and Anselm Levskaya and Sanjay Ghemawat and Sunipa Dev and Henryk Michalewski and Xavier Garc{\'i}a and Vedant Misra and Kevin Robinson and Liam Fedus and Denny Zhou and Daphne Ippolito and David Luan and Hyeontaek Lim and Barret Zoph and Alexander Spiridonov and Ryan Sepassi and David Dohan and Shivani Agrawal and Mark Omernick and Andrew M. Dai and Thanumalayan Sankaranarayana Pillai and Marie Pellat and Aitor Lewkowycz and Erica Oliveira Moreira and Rewon Child and Oleksandr Polozov and Katherine Lee and Zongwei Zhou and Xuezhi Wang and Brennan Saeta and Mark Diaz and Orhan Firat and Michele Catasta and Jason Wei and Kathleen S. Meier-Hellstern and Douglas Eck and Jeff Dean and Slav Petrov and Noah Fiedel},
    year    = {2022}
}
Comments
  • Contrastive loss should be applied to L2-normed embeddings instead of layer normed?

    Contrastive loss should be applied to L2-normed embeddings instead of layer normed?

    Hi @lucidrains, thank you for the implementation. Just wanted to confirm this with you, based on your code we're normalizing the img embedding and text embedding respectively using a learnable Layer Norm transformation before applying the contrastive loss. But based on my understanding, for contrastive loss we typically maximize the relative cosine similarity so the embeddings should be L2-normed instead of layernormed? Thank you.

    opened by fedshyvana 2
  • Extractor in vit_pytorch will detach the tensor.

    Extractor in vit_pytorch will detach the tensor.

    Thanks for your code! I think I may find a little bug. The cloned tensor in Extractor will be detached (https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/extractor.py#L39). So gradient may not propagate back to image encoder.

    opened by techkang 2
  • Maybe don't need this rearrange

    Maybe don't need this rearrange

    I think the logits before this line in shape (bsz, length, num_tokens) -> so I don't think here need one more rearrange https://github.com/lucidrains/CoCa-pytorch/blob/25de0b04326d8dc4c6f969e90b4466fc4894835e/coca_pytorch/coca_pytorch.py#L461

    opened by CiaoHe 2
  • How to train the model using my own dataset?

    How to train the model using my own dataset?

    Can someone tell me how to train the model using my own dataset? is it like below?But I have many images and texts...

    # train by giving CoCa your text and images with `return_loss = True`
    loss = coca(
        text = text,
        images = images,
        return_loss = True  # set this to True to get the full caption + contrastive loss
    )
    
    opened by keepcodeandsmile 1
  • why train VIT visual encoder first?

    why train VIT visual encoder first?

    Hi, thanks for sharing this repo. In the CoCA paper, both the visual encoder and text encoder are end-to end trained. But in this repo, the vit is first pretrained then fixed to train CoCa.

    opened by Flowerfan 1
  • attn_mask

    attn_mask

    cls_mask = rearrange(text!=self.pad_id, 'b j -> b 1 j')  
    attn_mask = F.pad(cls_mask, (0, 1, seq, 0), value=True)
    
    attn_mask = rearrange(attn_mask, 'b i j -> b 1 i j')  
    sim = sim.masked_fill(~attn_mask, -torch.finfo(sim.dtype).max)
    

    Hello, I am confused of the implement of "attn_mask". I think this padding function only can mask the last row of "sim". Could you please explain it? Perhaps it's a very fool question. Thank you so much.

    opened by pldlgb 0
  • Reproducing the results in the paper

    Reproducing the results in the paper

    Thanks for this repo. Curious, is this an independent implementation of the CoCa paper? If yes, did you reproduce any result in the paper to ensure correctness of implementation?

    opened by GKIBMNY 0
  • Generating the caption of a given image

    Generating the caption of a given image

    Hello,

    Thank you for having implemented this model. Have you already implemented some code to generate the caption of a given image? If not, do you have an idea about how you would do it in this particular architecture?

    Thank you in advance.

    opened by claudiogreco 0
Releases(0.0.7)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021