Pairwise learning neural link prediction for ogb link prediction

Related tags

Deep LearningPLNLP
Overview

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

This repository provides evaluation codes of PLNLP for OGB link property prediction task. The idea of PLNLP is described in the following article:

Pairwise Learning for Neural Link Prediction (https://arxiv.org/pdf/2112.02936.pdf)

The performance of PLNLP on OGB link prediction tasks is listed as the following tables:

ogbl-ddi ([email protected]) ogbl-collab ([email protected]) ogbl-citation2 (MRR)
Validation 82.42 ± 2.53 100.00 ± 0.00 84.90 ± 0.31
Test 90.88 ± 3.13 68.72 ± 0.52 84.92 ± 0.29

Only with basic graph neural layers (GraphSAGE or GCN), PLNLP achieves Top-1 performance on ogbl-ddi, and Top-2 on both ogbl-collab and ogbl-citation2 in current OGB Link Property Prediction Leader Board, which demonstrates the effectiveness of the proposed framework. We beielve that the performance will be further improved with link prediction specific neural architecure, such as proposed ones in our previous work [2][3]. We leave this part in the future work.

Environment

The code is implemented with PyTorch and PyTorch Geometric. Requirments:
 1. python=3.6
 2. pytorch=1.7.1
 3. ogb=1.3.2
 4. pyg=2.0.1

Reproduction of performance on OGBL

ogbl-ddi:

python main.py --data_name=ogbl-ddi --emb_hidden_channels=512 --gnn_hidden_channels=512 --mlp_hidden_channels=512 --num_neg=3 --epochs=500 --neg_sampler=global --dropout=0.3 

ogbl-collab:

Validation set is allowed to be used for training in this dataset. Meanwhile, following the trick of HOP-REC, we only use training edges after year 2010 with validation edges, and train the model on this subgraph.

python main.py --data_name=ogbl-collab --predictor=DOT --use_valedges_as_input=True --year=2010 --train_on_subgraph=True --num_neg=1 --epochs=800 --eval_last_best=True --neg_sampler=global --dropout=0.3

ogbl-citation2:

python main.py --data_name=ogbl-citation2 --use_node_feat=True --encoder=GCN --emb_hidden_channels=50 --mlp_hidden_channels=200 --gnn_hidden_channels=200 --grad_clip_norm=1 --eval_steps=1 --num_neg=3 --eval_metric=mrr --epochs=100 --neg_sampler=local --dropout=0 

Reference

This work is based on our previous work as listed below:

[1] Zhitao Wang, Chengyao Chen, Wenjie Li. "Predictive Network Representation Learning for Link Prediction" (SIGIR'17) [Paper]

[2] Zhitao Wang, Yu Lei and Wenjie Li. "Neighborhood Interaction Attention Network for Link Prediction" (CIKM'19) [Paper]

[3] Zhitao Wang, Yu Lei and Wenjie Li. "Neighborhood Attention Networks with Adversarial Learning for Link Prediction " (TNNLS) [Paper]

Owner
Zhitao WANG
Researcher at WeChat Pay, Tencent
Zhitao WANG
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
PyTorch implementation of the implicit Q-learning algorithm (IQL)

Implicit-Q-Learning (IQL) PyTorch implementation of the implicit Q-learning algorithm IQL (Paper) Currently only implemented for online learning. Offl

Sebastian Dittert 27 Dec 30, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022