Select, weight and analyze complex sample data

Overview

Sample Analytics

docs

In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect the random mechanism. Samplics is a python package that implements a set of sampling techniques for complex survey designs. These survey sampling techniques are organized into the following four sub-packages.

Sampling provides a set of random selection techniques used to draw a sample from a population. It also provides procedures for calculating sample sizes. The sampling subpackage contains:

  • Sample size calculation and allocation: Wald and Fleiss methods for proportions.
  • Equal probability of selection: simple random sampling (SRS) and systematic selection (SYS)
  • Probability proportional to size (PPS): Systematic, Brewer's method, Hanurav-Vijayan method, Murphy's method, and Rao-Sampford's method.

Weighting provides the procedures for adjusting sample weights. More specifically, the weighting subpackage allows the following:

  • Weight adjustment due to nonresponse
  • Weight poststratification, calibration and normalization
  • Weight replication i.e. Bootstrap, BRR, and Jackknife

Estimation provides methods for estimating the parameters of interest with uncertainty measures that are consistent with the sampling design. The estimation subpackage implements the following types of estimation methods:

  • Taylor-based, also called linearization methods
  • Replication-based estimation i.e. Boostrap, BRR, and Jackknife
  • Regression-based e.g. generalized regression (GREG)

Small Area Estimation (SAE). When the sample size is not large enough to produce reliable / stable domain level estimates, SAE techniques can be used to model the output variable of interest to produce domain level estimates. This subpackage provides Area-level and Unit-level SAE methods.

For more details, visit https://samplics.readthedocs.io/en/latest/

Usage

Let's assume that we have a population and we would like to select a sample from it. The goal is to calculate the sample size for an expected proportion of 0.80 with a precision (half confidence interval) of 0.10.

from samplics.sampling import SampleSize

sample_size = SampleSize(parameter = "proportion")
sample_size.calculate(target=0.80, half_ci=0.10)

Furthermore, the population is located in four natural regions i.e. North, South, East, and West. We could be interested in calculating sample sizes based on region specific requirements e.g. expected proportions, desired precisions and associated design effects.

from samplics.sampling import SampleSize

sample_size = SampleSize(parameter="proportion", method="wald", stratification=True)

expected_proportions = {"North": 0.95, "South": 0.70, "East": 0.30, "West": 0.50}
half_ci = {"North": 0.30, "South": 0.10, "East": 0.15, "West": 0.10}
deff = {"North": 1, "South": 1.5, "East": 2.5, "West": 2.0}

sample_size = SampleSize(parameter = "proportion", method="Fleiss", stratification=True)
sample_size.calculate(target=expected_proportions, half_ci=half_ci, deff=deff)

To select a sample of primary sampling units using PPS method, we can use code similar to the snippets below. Note that we first use the datasets module to import the example dataset.

# First we import the example dataset
from samplics.datasets import load_psu_frame
psu_frame_dict = load_psu_frame()
psu_frame = psu_frame_dict["data"]

# Code for the sample selection
from samplics.sampling import SampleSelection

psu_sample_size = {"East":3, "West": 2, "North": 2, "South": 3}
pps_design = SampleSelection(
   method="pps-sys",
   stratification=True,
   with_replacement=False
   )

psu_frame["psu_prob"] = pps_design.inclusion_probs(
   psu_frame["cluster"],
   psu_sample_size,
   psu_frame["region"],
   psu_frame["number_households_census"]
   )

The initial weighting step is to obtain the design sample weights. In this example, we show a simple example of two-stage sampling design.

import pandas as pd

from samplics.datasets import load_psu_sample, load_ssu_sample
from samplics.weighting import SampleWeight

# Load PSU sample data
psu_sample_dict = load_psu_sample()
psu_sample = psu_sample_dict["data"]

# Load PSU sample data
ssu_sample_dict = load_ssu_sample()
ssu_sample = ssu_sample_dict["data"]

full_sample = pd.merge(
    psu_sample[["cluster", "region", "psu_prob"]],
    ssu_sample[["cluster", "household", "ssu_prob"]],
    on="cluster"
)

full_sample["inclusion_prob"] = full_sample["psu_prob"] * full_sample["ssu_prob"]
full_sample["design_weight"] = 1 / full_sample["inclusion_prob"]

To adjust the design sample weight for nonresponse, we can use code similar to:

import numpy as np

from samplics.weighting import SampleWeight

# Simulate response
np.random.seed(7)
full_sample["response_status"] = np.random.choice(
    ["ineligible", "respondent", "non-respondent", "unknown"],
    size=full_sample.shape[0],
    p=(0.10, 0.70, 0.15, 0.05),
)
# Map custom response statuses to teh generic samplics statuses
status_mapping = {
   "in": "ineligible",
   "rr": "respondent",
   "nr": "non-respondent",
   "uk":"unknown"
   }
# adjust sample weights
full_sample["nr_weight"] = SampleWeight().adjust(
   samp_weight=full_sample["design_weight"],
   adjust_class=full_sample["region"],
   resp_status=full_sample["response_status"],
   resp_dict=status_mapping
   )

To estimate population parameters using Taylor-based and replication-based methods, we can use code similar to:

# Taylor-based
from samplics.datasets import load_nhanes2

nhanes2_dict = load_nhanes2()
nhanes2 = nhanes2_dict["data"]

from samplics.estimation import TaylorEstimator

zinc_mean_str = TaylorEstimator("mean")
zinc_mean_str.estimate(
    y=nhanes2["zinc"],
    samp_weight=nhanes2["finalwgt"],
    stratum=nhanes2["stratid"],
    psu=nhanes2["psuid"],
    remove_nan=True,
)

# Replicate-based
from samplics.datasets import load_nhanes2brr

nhanes2brr_dict = load_nhanes2brr()
nhanes2brr = nhanes2brr_dict["data"]

from samplics.estimation import ReplicateEstimator

ratio_wgt_hgt = ReplicateEstimator("brr", "ratio").estimate(
    y=nhanes2brr["weight"],
    samp_weight=nhanes2brr["finalwgt"],
    x=nhanes2brr["height"],
    rep_weights=nhanes2brr.loc[:, "brr_1":"brr_32"],
    remove_nan=True,
)

To predict small area parameters, we can use code similar to:

import numpy as np
import pandas as pd

# Area-level basic method
from samplics.datasets import load_expenditure_milk

milk_exp_dict = load_expenditure_milk()
milk_exp = milk_exp_dict["data"]

from samplics.sae import EblupAreaModel

fh_model_reml = EblupAreaModel(method="REML")
fh_model_reml.fit(
    yhat=milk_exp["direct_est"],
    X=pd.get_dummies(milk_exp["major_area"], drop_first=True),
    area=milk_exp["small_area"],
    error_std=milk_exp["std_error"],
    intercept=True,
    tol=1e-8,
)
fh_model_reml.predict(
    X=pd.get_dummies(milk_exp["major_area"], drop_first=True),
    area=milk_exp["small_area"],
    intercept=True,
)

# Unit-level basic method
from samplics.datasets import load_county_crop, load_county_crop_means

# Load County Crop sample data
countycrop_dict = load_county_crop()
countycrop = countycrop_dict["data"]
# Load County Crop Area Means sample data
countycropmeans_dict = load_county_crop_means()
countycrop_means = countycropmeans_dict["data"]

from samplics.sae import EblupUnitModel

eblup_bhf_reml = EblupUnitModel()
eblup_bhf_reml.fit(
    countycrop["corn_area"],
    countycrop[["corn_pixel", "soybeans_pixel"]],
    countycrop["county_id"],
)
eblup_bhf_reml.predict(
    Xmean=countycrop_means[["ave_corn_pixel", "ave_corn_pixel"]],
    area=np.linspace(1, 12, 12),
)

Installation

pip install samplics

Python 3.7 or newer is required and the main dependencies are numpy, pandas, scpy, and statsmodel.

Contribution

If you would like to contribute to the project, please read contributing to samplics

License

MIT

Contact

created by Mamadou S. Diallo - feel free to contact me!

Owner
samplics
samplics
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
It is a system used to detect bone fractures. using techniques deep learning and image processing

MohammedHussiengadalla-Intelligent-Classification-System-for-Bone-Fractures It is a system used to detect bone fractures. using techniques deep learni

Mohammed Hussien 7 Nov 11, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Individual Tree Crown classification on WorldView-2 Images using Autoencoder -- Group 9 Weak learners - Final Project (Machine Learning 2020 Course)

Created by Olga Sutyrina, Sarah Elemili, Abduragim Shtanchaev and Artur Bille Individual Tree Crown classification on WorldView-2 Images using Autoenc

2 Dec 08, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023