Tutorials and implementations for "Self-normalizing networks"

Related tags

Deep LearningSNNs
Overview

Self-Normalizing Networks

Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print).

Versions

  • see environment file for full list of prerequisites. Tutorial implementations use Tensorflow > 2.0 (Keras) or Pytorch, but versions for Tensorflow 1.x users based on the deprecated tf.contrib module (with separate environment file) are also available.

Note for Tensorflow >= 1.4 users

Tensorflow >= 1.4 already has the function tf.nn.selu and tf.contrib.nn.alpha_dropout that implement the SELU activation function and the suggested dropout version.

Note for Tensorflow >= 2.0 users

Tensorflow 2.3 already has selu activation function when using high level framework keras, tf.keras.activations.selu. Must be combined with tf.keras.initializers.LecunNormal, corresponding dropout version is tf.keras.layers.AlphaDropout.

Note for Pytorch users

Pytorch versions >= 0.2 feature torch.nn.SELU and torch.nn.AlphaDropout, they must be combined with the correct initializer, namely torch.nn.init.kaiming_normal_ (parameter, mode='fan_in', nonlinearity='linear') as this is identical to lecun initialisation (mode='fan_in') with a gain of 1 (nonlinearity='linear').

Tutorials

Tensorflow 1.x

  • Multilayer Perceptron on MNIST (notebook)
  • Convolutional Neural Network on MNIST (notebook)
  • Convolutional Neural Network on CIFAR10 (notebook)

Tensorflow 2.x (Keras)

Pytorch

  • Multilayer Perceptron on MNIST (notebook)
  • Convolutional Neural Network on MNIST (notebook)
  • Convolutional Neural Network on CIFAR10 (notebook)

Further material

Design novel SELU functions (Tensorflow 1.x)

  • How to obtain the SELU parameters alpha and lambda for arbitrary fixed points (notebook)

Basic python functions to implement SNNs (Tensorflow 1.x)

are provided as code chunks here: selu.py

Notebooks and code to produce Figure 1 (Tensorflow 1.x)

are provided here: Figure1, builds on top of the biutils package.

Calculations and numeric checks of the theorems (Mathematica)

are provided as mathematica notebooks here:

UCI, Tox21 and HTRU2 data sets

Owner
Institute of Bioinformatics, Johannes Kepler University Linz
Software of the Institute of Bioinformatics, JKU Linz. Updated repo at: https://github.com/ml-jku
Institute of Bioinformatics, Johannes Kepler University Linz
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
PyTorch Implementation of the paper Learning to Reweight Examples for Robust Deep Learning

Learning to Reweight Examples for Robust Deep Learning Unofficial PyTorch implementation of Learning to Reweight Examples for Robust Deep Learning. Th

Daniel Stanley Tan 325 Dec 28, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
PyTorch implementation of UPFlow (unsupervised optical flow learning)

UPFlow: Upsampling Pyramid for Unsupervised Optical Flow Learning By Kunming Luo, Chuan Wang, Shuaicheng Liu, Haoqiang Fan, Jue Wang, Jian Sun Megvii

kunming luo 87 Dec 20, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022