Tutorials and implementations for "Self-normalizing networks"

Related tags

Deep LearningSNNs
Overview

Self-Normalizing Networks

Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print).

Versions

  • see environment file for full list of prerequisites. Tutorial implementations use Tensorflow > 2.0 (Keras) or Pytorch, but versions for Tensorflow 1.x users based on the deprecated tf.contrib module (with separate environment file) are also available.

Note for Tensorflow >= 1.4 users

Tensorflow >= 1.4 already has the function tf.nn.selu and tf.contrib.nn.alpha_dropout that implement the SELU activation function and the suggested dropout version.

Note for Tensorflow >= 2.0 users

Tensorflow 2.3 already has selu activation function when using high level framework keras, tf.keras.activations.selu. Must be combined with tf.keras.initializers.LecunNormal, corresponding dropout version is tf.keras.layers.AlphaDropout.

Note for Pytorch users

Pytorch versions >= 0.2 feature torch.nn.SELU and torch.nn.AlphaDropout, they must be combined with the correct initializer, namely torch.nn.init.kaiming_normal_ (parameter, mode='fan_in', nonlinearity='linear') as this is identical to lecun initialisation (mode='fan_in') with a gain of 1 (nonlinearity='linear').

Tutorials

Tensorflow 1.x

  • Multilayer Perceptron on MNIST (notebook)
  • Convolutional Neural Network on MNIST (notebook)
  • Convolutional Neural Network on CIFAR10 (notebook)

Tensorflow 2.x (Keras)

Pytorch

  • Multilayer Perceptron on MNIST (notebook)
  • Convolutional Neural Network on MNIST (notebook)
  • Convolutional Neural Network on CIFAR10 (notebook)

Further material

Design novel SELU functions (Tensorflow 1.x)

  • How to obtain the SELU parameters alpha and lambda for arbitrary fixed points (notebook)

Basic python functions to implement SNNs (Tensorflow 1.x)

are provided as code chunks here: selu.py

Notebooks and code to produce Figure 1 (Tensorflow 1.x)

are provided here: Figure1, builds on top of the biutils package.

Calculations and numeric checks of the theorems (Mathematica)

are provided as mathematica notebooks here:

UCI, Tox21 and HTRU2 data sets

Owner
Institute of Bioinformatics, Johannes Kepler University Linz
Software of the Institute of Bioinformatics, JKU Linz. Updated repo at: https://github.com/ml-jku
Institute of Bioinformatics, Johannes Kepler University Linz
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
[CVPR2021] De-rendering the World's Revolutionary Artefacts

De-rendering the World's Revolutionary Artefacts Project Page | Video | Paper In CVPR 2021 Shangzhe Wu1,4, Ameesh Makadia4, Jiajun Wu2, Noah Snavely4,

49 Nov 06, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations

Transfer-Learning-in-Reinforcement-Learning Transfer Reinforcement Learning for Differing Action Spaces via Q-Network Representations Final Report Tra

Trung Hieu Tran 4 Oct 17, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022