[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

Overview

MVSNeRF

Project page | Paper

This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo. Our work present a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis, Moreover, if dense images are captured, our estimated radiance field representation can be easily fine-tuned; this leads to fast per-scene reconstruction.

Pipeline

Installation

Tested on Ubuntu 16.04 + Pytorch 1.8 + Pytorch Lignting 1.3.5

Install environment:

pip install pytorch-lightning, inplace_abn
pip install imageio, pillow, scikit-image, opencv-python, config-argparse, lpips

Training

Please see each subsection for training on different datasets. Available training datasets:

DTU dataset

Data download

Download the preprocessed DTU training data and Depth_raw from original MVSNet repo and unzip. We provide a DTU example, please follow with the example's folder structure.

Training model

Run

CUDA_VISIBLE_DEVICES=$cuda  python train_mvs_nerf_pl.py \
   --expname $exp_name
   --num_epochs 6
   --use_viewdirs \
   --dataset_name dtu \
   --datadir $DTU_DIR

More options refer to the opt.py, training command example:

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_pl.py
    --with_depth  --imgScale_test 1.0 \
    --expname mvs-nerf-is-all-your-need \
    --num_epochs 6 --N_samples 128 --use_viewdirs --batch_size 1024 \
    --dataset_name dtu \
    --datadir path/to/dtu/data \
    --N_vis 6

You may need to add --with_depth if you want to quantity depth during training. --N_vis denotes the validation frequency. --imgScale_test is the downsample ratio during validation, like 0.5. The training process takes about 30h on single RTX 2080Ti for 6 epochs.

Important: please always set batch_size to 1 when you are trining a genelize model, you can enlarge it when fine-tuning.

Checkpoint: a pre-trained checkpint is included in ckpts/mvsnerf-v0.tar.

Evaluation: We also provide a rendering and quantity scipt in renderer.ipynb, and you can also use the run_batch.py if you want to testing or finetuning on different dataset. More results can be found from Here, please check your configuration if your rendering result looks absnormal.

Rendering from the trained model should have result like this:

no-finetuned

Finetuning

Blender

Steps

Data download

Download nerf_synthetic.zip from here

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name blender --datadir /path/to/nerf_synthetic/lego \
    --expname lego-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0 --white_bkgd  --pad 0 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

LLFF

Steps

Data download

Download nerf_llff_data.zip from here

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name llff --datadir /path/to/nerf_llff_data/{scene_name} \
    --expname horns-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0  --pad 24 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

DTU

Steps
CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name dtu_ft --datadir /path/to/DTU/mvs_training/dtu/scan1 \
    --expname scan1-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0   --pad 24 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

Rendering

After training or finetuning, you can render free-viewpoint videos with the renderer-video.ipynb. if you want to use your own data, please using the right hand coordinate system (intrinsic, nearfar and extrinsic either with camera to world or world to camera in opencv format) and modify the rendering scipts.

After 10k iterations (~ 15min), you should have videos like this:

finetuned

Citation

If you find our code or paper helps, please consider citing:

@article{chen2021mvsnerf,
  title={MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo},
  author={Chen, Anpei and Xu, Zexiang and Zhao, Fuqiang and Zhang, Xiaoshuai and Xiang, Fanbo and Yu, Jingyi and Su, Hao},
  journal={arXiv preprint arXiv:2103.15595},
  year={2021}
}

Big thanks to CasMVSNet_pl, our code is partially borrowing from them.

Relevant Works

MVSNet: Depth Inference for Unstructured Multi-view Stereo (ECCV 2018)
Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, Long Quan

Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching (CVPR 2020)
Xiaodong Gu, Zhiwen Fan, Zuozhuo Dai, Siyu Zhu, Feitong Tan, Ping Tan

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020)
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

IBRNet: Learning Multi-View Image-Based Rendering (CVPR 2021)
Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, Thomas Funkhouser

PixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)
Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa

Owner
Anpei Chen
Anpei Chen
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Augmented CLIP - Training simple models to predict CLIP image embeddings from text embeddings, and vice versa.

Train aug_clip against laion400m-embeddings found here: https://laion.ai/laion-400-open-dataset/ - note that this used the base ViT-B/32 CLIP model. S

Peter Baylies 55 Sep 13, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023