HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

Related tags

Deep LearningHPRNet
Overview

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

Official PyTroch implementation of HPRNet.

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation,
Nermin Samet, Emre Akbas,
Under review. (arXiv pre-print)

Highlights

  • HPRNet is a bottom-up, one-stage and hierarchical keypoint regression method for whole-body pose estimation.
  • HPRNet has the best performance among bottom-up methods for all the whole-body parts.
  • HPRNet achieves SOTA performance for the face (76.0 AP) and hand (51.2 AP) keypoint estimation.
  • Unlike two-stage methods, HPRNet predicts whole-body pose in a constant time independent of the number of people in an image.

COCO-WholeBody Keypoint Estimation Results

Model Body AP Foot AP Face AP Hand AP Whole-body AP Download
HPRNet (DLA) 55.2 / 57.1 49.1 / 50.7 74.6 / 75.4 47.0 / 48.4 31.5 / 32.7 model
HPRNet (Hourglass) 59.4 / 61.1 53.0 / 53.9 75.4 / 76.0 50.4 / 51.2 34.8 / 34.9 model
  • Results are presented without and with test time flip augmentation respectively.
  • All models are trained on COCO-WholeBody train2017 and evaluated on val2017.
  • The models can be downloaded directly from Google drive.

Installation

  1. [Optional but recommended] create a new conda environment.

    conda create --name HPRNet python=3.7
    

    And activate the environment.

    conda activate HPRNet
    
  2. Clone the repo:

    HPRNet_ROOT=/path/to/clone/HPRNet
    git clone https://github.com/nerminsamet/HPRNet $HPRNet_ROOT
    
  3. Install PyTorch 1.4.0:

    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  4. Install the requirements:

    pip install -r requirements.txt
    
  5. Compile DCNv2 (Deformable Convolutional Networks):

    cd $HPRNet_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    

Dataset preparation

  • Download the images (2017 Train, 2017 Val) from coco website.

  • Download train and val annotation files.

    ${COCO_PATH}
    |-- annotations
        |-- coco_wholebody_train_v1.0.json
        |-- coco_wholebody_val_v1.0.json
    |-- images
        |-- train2017
        |-- val2017 
    

Evaluation and Training

  • You could find all the evaluation and training scripts in the experiments folder.
  • For evaluation, please download the pretrained models you want to evaluate and put them in HPRNet_ROOT/models/.
  • In the case that you don't have 4 GPUs, you can follow the linear learning rate rule to adjust the learning rate.
  • If the training is terminated before finishing, you can use the same command with --resume to resume training.

Acknowledgement

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

License

HPRNet is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find HPRNet useful for your research, please cite our paper as follows:

N. Samet, E. Akbas, "HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation", arXiv, 2021.

BibTeX entry:

@misc{hprnet,
      title={HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation}, 
      author={Nermin Samet and Emre Akbas},
      year={2021}, 
}
Owner
Nermin Samet
PhD candidate
Nermin Samet
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Multiwavelets-based operator model

Multiwavelet model for Operator maps Gaurav Gupta, Xiongye Xiao, and Paul Bogdan Multiwavelet-based Operator Learning for Differential Equations In Ne

Gaurav 33 Dec 04, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022