Kindle is an easy model build package for PyTorch.

Overview

Kindle - PyTorch no-code model builder

PyPI - Python Version PyTorch Version GitHub Workflow Status PyPI LGTM Alerts

Documentation
API reference

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? when we can simply build a model with yaml markup file.

Kindle builds a model with no code but yaml file which its method is inspired from YOLOv5.

Contents

Installation

Install with pip

PyTorch is required prior to install. Please visit PyTorch installation guide to install.

You can install kindle by pip.

$ pip install kindle

Install from source

Please visit Install from source wiki page

For contributors

Please visit For contributors wiki page

Usage

Build a model

  1. Make model yaml file
input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    # [from, repeat, module, args]
    [
        [-1, 1, Conv, [6, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Conv, [16, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]
  1. Build the model with kindle
from kindle import Model

model = Model("model.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |        616 |            Conv |         [6, 5, 1, 0] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |      3,232 |            Conv |        [16, 5, 1, 0] |                      [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [16 16 16] |      [16, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [16 8 8] |          [1024] |
  5 |         -1 |   1 |    123,000 |          Linear |        [120, 'ReLU'] |                         [1024] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 21 layers, 137,862 parameters, 137,862 gradients

AutoML with Kindle

  • Kindle offers the easiest way to build your own deep learning architecture. Beyond building a model, AutoML became easier with Kindle and Optuna or other optimization frameworks.
  • For further information, please refer to here

Supported modules

  • Detailed documents can be found here
Module Components Arguments
Conv Conv -> BatchNorm -> Activation [channel, kernel size, stride, padding, activation]
DWConv DWConv -> BatchNorm -> Activation [channel, kernel_size, stride, padding, activation]
Bottleneck Expansion ConvBNAct -> ConvBNAct [channel, shortcut, groups, expansion, activation]
AvgPool Average pooling [kernel_size, stride, padding]
MaxPool Max pooling [kernel_size, stride, padding]
GlobalAvgPool Global Average Pooling []
Flatten Flatten []
Concat Concatenation [dimension]
Linear Linear [channel, activation]
Add Add []

Custom module support

Custom module with yaml

You can make your own custom module with yaml file.

1. custom_module.yaml

args: [96, 32]

module:
    # [from, repeat, module, args]
    [
        [-1, 1, Conv, [arg0, 1, 1]],
        [0, 1, Conv, [arg1, 3, 1]],
        [0, 1, Conv, [arg1, 5, 1]],
        [0, 1, Conv, [arg1, 7, 1]],
        [[1, 2, 3], 1, Concat, [1]],
        [[0, 4], 1, Add, []],
    ]
  • Arguments of yaml module can be defined as arg0, arg1 ...

2. model_with_custom_module.yaml

input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

backbone:
    [
        [-1, 1, Conv, [6, 5, 1, 0]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, YamlModule, ["custom_module.yaml", 48, 16]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]
  • Note that argument of yaml module can be provided.

3. Build model

from kindle import Model

model = Model("model_with_custom_module.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |        616 |            Conv |         [6, 5, 1, 0] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |     10,832 |      YamlModule |    ['custom_module'] |                      [8 16 16] |    [24, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [24 16 16] |      [24, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [24 8 8] |          [1536] |
  5 |         -1 |   1 |    184,440 |          Linear |        [120, 'ReLU'] |                         [1536] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 36 layers, 206,902 parameters, 206,902 gradients

Custom module from source

You can make your own custom module from the source.

1. custom_module_model.yaml

input_size: [32, 32]
input_channel: 3

depth_multiple: 1.0
width_multiple: 1.0

custom_module_paths: ["tests.test_custom_module"]  # Paths to the custom modules of the source

backbone:
    # [from, repeat, module, args]
    [
        [-1, 1, MyConv, [6, 5, 3]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, MyConv, [16, 3, 5, SiLU]],
        [-1, 1, MaxPool, [2]],
        [-1, 1, Flatten, []],
        [-1, 1, Linear, [120, ReLU]],
        [-1, 1, Linear, [84, ReLU]],
        [-1, 1, Linear, [10]]
    ]

2. Write PyTorch module and ModuleGenerator

tests/test_custom_module.py

from typing import List, Union

import numpy as np
import torch
from torch import nn

from kindle.generator import GeneratorAbstract
from kindle.torch_utils import Activation, autopad


class MyConv(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        n: int,
        activation: Union[str, None] = "ReLU",
    ) -> None:
        super().__init__()
        convs = []
        for i in range(n):
            convs.append(
                nn.Conv2d(
                    in_channels,
                    in_channels if (i + 1) != n else out_channels,
                    kernel_size,
                    padding=autopad(kernel_size),
                    bias=False,
                )
            )

        self.convs = nn.Sequential(*convs)
        self.batch_norm = nn.BatchNorm2d(out_channels)
        self.activation = Activation(activation)()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.activation(self.batch_norm(self.convs(x)))


class MyConvGenerator(GeneratorAbstract):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

    @property
    def out_channel(self) -> int:
        return self._get_divisible_channel(self.args[0] * self.width_multiply)

    @property
    def in_channel(self) -> int:
        if isinstance(self.from_idx, list):
            raise Exception("from_idx can not be a list.")
        return self.in_channels[self.from_idx]

    @torch.no_grad()
    def compute_out_shape(self, size: np.ndarray, repeat: int = 1) -> List[int]:
        module = self(repeat=repeat)
        module.eval()
        module_out = module(torch.zeros([1, *list(size)]))
        return list(module_out.shape[-3:])

    def __call__(self, repeat: int = 1) -> nn.Module:
        args = [self.in_channel, self.out_channel, *self.args[1:]]
        if repeat > 1:
            module = [MyConv(*args) for _ in range(repeat)]
        else:
            module = MyConv(*args)

        return self._get_module(module)

3. Build a model

from kindle import Model

model = Model("custom_module_model.yaml"), verbose=True)
idx |       from |   n |     params |          module |            arguments |                       in shape |       out shape |
---------------------------------------------------------------------------------------------------------------------------------
  0 |         -1 |   1 |      1,066 |          MyConv |            [6, 5, 3] |                    [3, 32, 32] |     [8, 32, 32] |
  1 |         -1 |   1 |          0 |         MaxPool |                  [2] |                      [8 32 32] |     [8, 16, 16] |
  2 |         -1 |   1 |      3,488 |          MyConv |   [16, 3, 5, 'SiLU'] |                      [8 16 16] |    [16, 16, 16] |
  3 |         -1 |   1 |          0 |         MaxPool |                  [2] |                     [16 16 16] |      [16, 8, 8] |
  4 |         -1 |   1 |          0 |         Flatten |                   [] |                       [16 8 8] |          [1024] |
  5 |         -1 |   1 |    123,000 |          Linear |        [120, 'ReLU'] |                         [1024] |           [120] |
  6 |         -1 |   1 |     10,164 |          Linear |         [84, 'ReLU'] |                          [120] |            [84] |
  7 |         -1 |   1 |        850 |          Linear |                 [10] |                           [84] |            [10] |
Model Summary: 29 layers, 138,568 parameters, 138,568 gradients

Planned features

  • Custom module support
  • Custom module with yaml support
  • Use pre-trained model
  • More modules!
Owner
Jongkuk Lim
Deep Learning, Machine Learning, Data Science, Edge Computing, Fitness Enthusiast
Jongkuk Lim
LUKE -- Language Understanding with Knowledge-based Embeddings

LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transf

Studio Ousia 587 Dec 30, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022