LETR: Line Segment Detection Using Transformers without Edges

Related tags

Deep LearningLETR
Overview

LETR: Line Segment Detection Using Transformers without Edges

Introduction

This repository contains the official code and pretrained models for Line Segment Detection Using Transformers without Edges. Yifan Xu*, Weijian Xu*, David Cheung, and Zhuowen Tu. CVPR2021 (Oral)

In this paper, we present a joint end-to-end line segment detection algorithm using Transformers that is post-processing and heuristics-guided intermediate processing (edge/junction/region detection) free. Our method, named LinE segment TRansformers (LETR), takes advantages of having integrated tokenized queries, a self-attention mechanism, and encoding-decoding strategy within Transformers by skipping standard heuristic designs for the edge element detection and perceptual grouping processes. We equip Transformers with a multi-scale encoder/decoder strategy to perform fine-grained line segment detection under a direct endpoint distance loss. This loss term is particularly suitable for detecting geometric structures such as line segments that are not conveniently represented by the standard bounding box representations. The Transformers learn to gradually refine line segments through layers of self-attention.

Model Pipeline

Changelog

05/07/2021: Code for LETR Basic Usage Demo are released.

04/30/2021: Code and pre-trained checkpoint for LETR are released.

Results and Checkpoints

Name sAP10 sAP15 sF10 sF15 URL
Wireframe 65.6 68.0 66.1 67.4 LETR-R101
YorkUrban 29.6 32.0 40.5 42.1 LETR-R50

Reproducing Results

Step1: Code Preparation

git clone https://github.com/mlpc-ucsd/LETR.git

Step2: Environment Installation

mkdir -p data
mkdir -p evaluation/data
mkdir -p exp


conda create -n letr python anaconda
conda activate letr
conda install -c pytorch pytorch torchvision
conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
pip install docopt

Step3: Data Preparation

To reproduce our results, you need to process two datasets, ShanghaiTech and YorkUrban. Files located at ./helper/wireframe.py and ./helper/york.py are both modified based on the code from L-CNN, which process the raw data from download.

  • ShanghaiTech Train Data
    • To Download (modified based on from L-CNN)
      cd data
      bash ../helper/gdrive-download.sh 1BRkqyi5CKPQF6IYzj_dQxZFQl0OwbzOf wireframe_raw.tar.xz
      tar xf wireframe_raw.tar.xz
      rm wireframe_raw.tar.xz
      python ../helper/wireframe.py ./wireframe_raw ./wireframe_processed
      
  • YorkUrban Train Data
    • To Download
      cd data
      wget https://www.dropbox.com/sh/qgsh2audfi8aajd/AAAQrKM0wLe_LepwlC1rzFMxa/YorkUrbanDB.zip
      unzip YorkUrbanDB.zip 
      python ../helper/york.py ./YorkUrbanDB ./york_processed
      
  • Processed Evaluation Data
    bash ./helper/gdrive-download.sh 1T4_6Nb5r4yAXre3lf-zpmp3RbmyP1t9q ./evaluation/data/wireframe.tar.xz
    bash ./helper/gdrive-download.sh 1ijOXv0Xw1IaNDtp1uBJt5Xb3mMj99Iw2 ./evaluation/data/york.tar.xz
    tar -vxf ./evaluation/data/wireframe.tar.xz -C ./evaluation/data/.
    tar -vxf ./evaluation/data/york.tar.xz -C ./evaluation/data/.
    rm ./evaluation/data/wireframe.tar.xz
    rm ./evaluation/data/york.tar.xz

Step4: Train Script Examples

  1. Train a coarse-model (a.k.a. stage1 model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a0_train_stage1_res50.sh  res50_stage1 # LETR-R50  
    bash script/train/a1_train_stage1_res101.sh res101_stage1 # LETR-R101 
  2. Train a fine-model (a.k.a. stage2 model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a2_train_stage2_res50.sh  res50_stage2  # LETR-R50
    bash script/train/a3_train_stage2_res101.sh res101_stage2 # LETR-R101 
  3. Fine-tune the fine-model with focal loss (a.k.a. stage2_focal model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a4_train_stage2_focal_res50.sh   res50_stage2_focal # LETR-R50
    bash script/train/a5_train_stage2_focal_res101.sh  res101_stage2_focal # LETR-R101 

Step5: Evaluation

  1. Evaluate models.
    # Evaluate sAP^10, sAP^15, sF^10, sF^15 (both Wireframe and YorkUrban datasets).
    bash script/evaluation/eval_stage1.sh [exp name]
    bash script/evaluation/eval_stage2.sh [exp name]
    bash script/evaluation/eval_stage2_focal.sh [exp name]

Citation

If you use this code for your research, please cite our paper:

@InProceedings{Xu_2021_CVPR,
    author    = {Xu, Yifan and Xu, Weijian and Cheung, David and Tu, Zhuowen},
    title     = {Line Segment Detection Using Transformers Without Edges},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {4257-4266}
}

Acknowledgments

This code is based on the implementations of DETR: End-to-End Object Detection with Transformers.

Owner
mlpc-ucsd
mlpc-ucsd
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022