LETR: Line Segment Detection Using Transformers without Edges

Related tags

Deep LearningLETR
Overview

LETR: Line Segment Detection Using Transformers without Edges

Introduction

This repository contains the official code and pretrained models for Line Segment Detection Using Transformers without Edges. Yifan Xu*, Weijian Xu*, David Cheung, and Zhuowen Tu. CVPR2021 (Oral)

In this paper, we present a joint end-to-end line segment detection algorithm using Transformers that is post-processing and heuristics-guided intermediate processing (edge/junction/region detection) free. Our method, named LinE segment TRansformers (LETR), takes advantages of having integrated tokenized queries, a self-attention mechanism, and encoding-decoding strategy within Transformers by skipping standard heuristic designs for the edge element detection and perceptual grouping processes. We equip Transformers with a multi-scale encoder/decoder strategy to perform fine-grained line segment detection under a direct endpoint distance loss. This loss term is particularly suitable for detecting geometric structures such as line segments that are not conveniently represented by the standard bounding box representations. The Transformers learn to gradually refine line segments through layers of self-attention.

Model Pipeline

Changelog

05/07/2021: Code for LETR Basic Usage Demo are released.

04/30/2021: Code and pre-trained checkpoint for LETR are released.

Results and Checkpoints

Name sAP10 sAP15 sF10 sF15 URL
Wireframe 65.6 68.0 66.1 67.4 LETR-R101
YorkUrban 29.6 32.0 40.5 42.1 LETR-R50

Reproducing Results

Step1: Code Preparation

git clone https://github.com/mlpc-ucsd/LETR.git

Step2: Environment Installation

mkdir -p data
mkdir -p evaluation/data
mkdir -p exp


conda create -n letr python anaconda
conda activate letr
conda install -c pytorch pytorch torchvision
conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
pip install docopt

Step3: Data Preparation

To reproduce our results, you need to process two datasets, ShanghaiTech and YorkUrban. Files located at ./helper/wireframe.py and ./helper/york.py are both modified based on the code from L-CNN, which process the raw data from download.

  • ShanghaiTech Train Data
    • To Download (modified based on from L-CNN)
      cd data
      bash ../helper/gdrive-download.sh 1BRkqyi5CKPQF6IYzj_dQxZFQl0OwbzOf wireframe_raw.tar.xz
      tar xf wireframe_raw.tar.xz
      rm wireframe_raw.tar.xz
      python ../helper/wireframe.py ./wireframe_raw ./wireframe_processed
      
  • YorkUrban Train Data
    • To Download
      cd data
      wget https://www.dropbox.com/sh/qgsh2audfi8aajd/AAAQrKM0wLe_LepwlC1rzFMxa/YorkUrbanDB.zip
      unzip YorkUrbanDB.zip 
      python ../helper/york.py ./YorkUrbanDB ./york_processed
      
  • Processed Evaluation Data
    bash ./helper/gdrive-download.sh 1T4_6Nb5r4yAXre3lf-zpmp3RbmyP1t9q ./evaluation/data/wireframe.tar.xz
    bash ./helper/gdrive-download.sh 1ijOXv0Xw1IaNDtp1uBJt5Xb3mMj99Iw2 ./evaluation/data/york.tar.xz
    tar -vxf ./evaluation/data/wireframe.tar.xz -C ./evaluation/data/.
    tar -vxf ./evaluation/data/york.tar.xz -C ./evaluation/data/.
    rm ./evaluation/data/wireframe.tar.xz
    rm ./evaluation/data/york.tar.xz

Step4: Train Script Examples

  1. Train a coarse-model (a.k.a. stage1 model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a0_train_stage1_res50.sh  res50_stage1 # LETR-R50  
    bash script/train/a1_train_stage1_res101.sh res101_stage1 # LETR-R101 
  2. Train a fine-model (a.k.a. stage2 model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a2_train_stage2_res50.sh  res50_stage2  # LETR-R50
    bash script/train/a3_train_stage2_res101.sh res101_stage2 # LETR-R101 
  3. Fine-tune the fine-model with focal loss (a.k.a. stage2_focal model).

    # Usage: bash script/*/*.sh [exp name]
    bash script/train/a4_train_stage2_focal_res50.sh   res50_stage2_focal # LETR-R50
    bash script/train/a5_train_stage2_focal_res101.sh  res101_stage2_focal # LETR-R101 

Step5: Evaluation

  1. Evaluate models.
    # Evaluate sAP^10, sAP^15, sF^10, sF^15 (both Wireframe and YorkUrban datasets).
    bash script/evaluation/eval_stage1.sh [exp name]
    bash script/evaluation/eval_stage2.sh [exp name]
    bash script/evaluation/eval_stage2_focal.sh [exp name]

Citation

If you use this code for your research, please cite our paper:

@InProceedings{Xu_2021_CVPR,
    author    = {Xu, Yifan and Xu, Weijian and Cheung, David and Tu, Zhuowen},
    title     = {Line Segment Detection Using Transformers Without Edges},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {4257-4266}
}

Acknowledgments

This code is based on the implementations of DETR: End-to-End Object Detection with Transformers.

Owner
mlpc-ucsd
mlpc-ucsd
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

Hust Visual Learning Team 253 Dec 21, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022