This repository contains implementations of all Machine Learning Algorithms from scratch in Python. Mathematics required for ML and many projects have also been included.

Overview

👏 Pre- requisites to Machine Learning

                                                                                                                       Key :-
1️⃣ Python Basics                                                                                                      🔴 Not Done Yet 
    a. Python basics :- variables, list, sets, tuples, loops, functions, lambda functions, dictionary, input methods   rest are completed
    b. Python Oops
    c. File and Error Handling 
    d. Iteration Protocol and Generators
    
2️⃣ Data Acquisition
    a. Data Acquisition using Beautiful Soup 
    b. Data Acquisition using Web APIs
    
3️⃣ Python Libraries :-
    a. Numpy
    b. Matplotlib
    c. Seaborn
    d. Pandas
   🔴Plotly
    
4️⃣ Feature Selection and Extraction
    a.Feature Selection - Chi2 test, RandomForest Classifier
    b.Feature Extraction - Principal Component Analysis

💯 Basics of Machine Learning

1️⃣ Basic
    ✅Types of ML
    ✅Challenges in ML
    ✅Overfitting and Underfitting
    🔴Testing and Validation
    🔴Cross Validation
    🔴Grid Search
    🔴Random Search
    🔴Confusion Matrix
    🔴Precision, Recall ], F1 Score
    🔴ROC-AUC Curve
 
 2️⃣ Predictive Modelling
   🔴Introduction to Predictive Modelling
   🔴Model in Analytics
   🔴Bussiness Problem and Prediction Model
   🔴Phases of Predictive Modelling
   🔴Data Exploration for Modelling
   🔴Data and Patterns
   🔴Identifying Missing Data
   🔴Outlier Detection
   🔴Z-Score
   🔴IQR
   🔴Percentile

🔥 Machine-Learning

1️⃣ K- Nearest Neighbour:-
       - Theory
       - Implementation
       
2️⃣ Linear Regression
       - What is Linear Regression
       - What is gradient descent
       - Implementation of gradient descent
       - Importance of Learning Rate
       - Types of Gradient Descent
       - Making predictions on data set
       - Contour and Surface Plots
       - Visualizing Loss function and Gradient Descent
       🔴 Polynomial Regression
       🔴Regularization
       🔴Ridge Regression
       🔴Lasso Regression
       🔴Elastic Net and Early Stopping 
       - Multivariate Linear Regression on boston housing dataset
       - Optimization of Multivariate Linear Regression 
       - Using Scikit Learn for Linear Regression  
       - Closed Form Solution
       - LOWESS - Locally Weighted Regression
       - Maximum Likelihood Estimation
       - Project - Air Pollution Regression
      
 3️⃣ Logistic Regression
      - Hypothesis function
      - Log Loss
      - Proof of Log loss by MLE
      - Gradient Descent Update rule for Logistic Regression
      - Gradient Descent Implementation of Logistic Regression
      🔴Multiclass Classification
      - Sk-Learn Implementation of Logistic Regression on chemical classification dataset.
      
4️⃣ Natural Language Processing 
      - Bag of Words Pipeline 
      - Tokenization and Stopword Removal
      - Regex based Tokenization
      - Stemming & Lemmatization
      - Constructing Vocab
      - Vectorization with Stopwords Removal
      - Bag of Words Model- Unigram, Bigram, Trigram, n- gram
      - TF-IDF Normalization     
      
5️⃣ Naive Bayes
      - Bayes Theorem Formula 
      - Bayes Theorem - Spam or not
      - Bayes Theorem - Disease or not
      - Mushroom Classification
      - Text Classification
      - Laplace Smoothing
      - Multivariate Bernoulli Naive Bayes
      - Multivariate Event Model Naive Bayes
      - Multivariate Bernoulli Naive Bayes vs Multivariate Event Model Naive Bayes
      - Gaussian Naive Bayes
      🔴 Project on Naive Bayes
      
6️⃣ Decision Tree 
      - Entropy
      - Information Gain
      - Process Kaggle Titanic Dataset 
      - Implementation of Information Gain
      - Implementation of Decision Tree
      - Making Predictions
      - Decision Trees using Sci-kit Learn
     
          
 7️⃣ Support Vector Machine 
      - SVM Implementation in Python
      🔴Different Types of Kernel
      🔴Project on SVC
      🔴Project on SVR
      🔴Project on SVC
  
 8️⃣ Principal Component Analysis
     🔴 PCA in Python 
     🔴 PCA Project
     🔴 Fail Case of PCA (Swiss Roll)
     
 9️⃣ K- Means
      🔴 Implentation in Python
      - Implementation using Libraries
      - K-Means ++
      - DBSCAN 
      🔴 Project
 
 🔟 Ensemble Methods and Random Forests
     🔴Ensemble and Voting Classifiers
     🔴Bagging and Pasting
     🔴Random Forest
     🔴Extra Tree
     🔴 Ada Boost
     🔴 Gradient Boosting
     🔴 Gradient Boosting with Sklearn
     🔴 Stacking Ensemble Learning
  
  1️⃣1️⃣  Unsupervised Learning
     🔴 Hierarchical Clustering
     🔴 DBSCAN 
     🔴 BIRCH 
     🔴 Mean - Shift
     🔴 Affinity Propagation
     🔴 Anomaly Detection
     🔴Spectral Clustering
     🔴 Gaussian Mixture
     🔴 Bayesian Gaussian Mixture Models

💯 Mathematics required for Machine Learning

    1️⃣ Statistics:
        a. Measures of central tendency – mean, median, mode
        b. measures of dispersion – mean deviation, standard deviation, quartile deviation, skewness and kurtosis.
        c. Correlation coefficient, regression, least squares principles of curve fitting
        
    2️⃣ Probability:
        a. Introduction, finite sample spaces, conditional probability and independence, Bayes’ theorem, one dimensional random variable, mean, variance.
        
    3️⃣ Linear Algebra :- scalars,vectors,matrices,tensors.transpose,broadcasting,matrix multiplication, hadamard product,norms,determinants, solving linear equations

📚 Handwritten notes with proper implementation and Mathematics Derivations of each algorithm from scratch

   ✅ KNN 
   ✅ Linear Regressio
   ✅ Logistic Regression 
   ✅ Feature Selection and Extraction
   ✅ Naive Bayes

🙌 Projects :-

    🔅 Movie Recommendation System
    🔅 Diabetes Classification 
    🔅 Handwriting Recognition
    🔅 Linkedin Webscraping
    🔅 Air Pollution Regression
Owner
Vanshika Mishra
I am a Data Science Enthusiast. Research and open source piques my interests
Vanshika Mishra
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Genpass - A Passwors Generator App With Python3

Genpass Welcom again into another python3 App this is simply an Passwors Generat

Mal4D 1 Jan 09, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation

Identifying a Training-Set Attack’s Target Using Renormalized Influence Estimation By: Zayd Hammoudeh and Daniel Lowd Paper: Arxiv Preprint Coming soo

Zayd Hammoudeh 2 Oct 08, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022